Skip to main content

Advertisement

Log in

Compositional induced structural, dielectric, ferroelectric and optical study of Bismuth modified Barium Titanate ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present manuscript reports the structural, dielectric, ferroelectric and optical properties of Bi substituted BaTiO3 (BT) ceramic with general formula Ba1-xBi2x/3TiO3, synthesized by conventional solid-state reaction route. The recorded room temperature XRD spectra show a tetragonal symmetry and the tetragonality reduces with Bi-doped derivatives. The temperature-dependent dielectric behavior of the compositions is studied and modification in the paraelectric-ferroelectric (PE-FE) phase transition is observed. The dielectric diffusivity increases with substitution of Bi3+ ion on A-site of BaTiO3 because of modified polar structure. The temperature coefficient of dielectric constant has been calculated and obtained values suggest that the composition x = 0.01 and 0.025 are suitable for X5R (− 15% ≤ \(\left( {\varepsilon - \in_{{25^{0} {\text{C}}}} } \right)/ \in_{{25^{0} {\text{C}}}}\) ≤ 15%, temperature range from − 55 to 85 °C) multi-layer ceramic capacitor (MLCC) application. A relaxor behavior has been observed for x = 0.1 and the Vogel-Fulcher fitting of the composition was carried out. The ferroelectric behavior illustrates that the coercive field and the remnant polarization increase up to x = 0.05 and decrease for higher doping. The energy storage efficiency for all the compositions has been calculated and the highest efficiency was obtained for x = 0.1. The optical property of all the synthesized samples has been studied using UV–Visible spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Maurya, Y. Zhou, Y. Yan, S. Priya, J. Mater. Chem. C. 1, 2102 (2013)

    Article  Google Scholar 

  2. J.T. Wang, Y. Wu, Z.G. Yang, X. Zhao, X. Chen, D. Zhao, Sens. Actuators A: Phys. 304, 111854 (2020)

    Article  Google Scholar 

  3. M.V. Zdorovets, A.L. Kozlovskiy, Vacuum 168, 108838 (2019)

    Article  ADS  Google Scholar 

  4. K. Uchino, Ferroelectric Devices, CRC Press, 2nd ed., 367(2009).

  5. X. Gao, N. Dong, F. Xia, Q. Guo, H. Hao, H. Liu, S. Zhang, Curr. Comput.-Aided Drug Des. 10(5), 367 (2020)

    Google Scholar 

  6. T. Zheng, Y. Yuan, X. Lv, Q. Li, T. Men, C. Zhao, D. Xiao, J. Wu, K. Wang, J.-F. Li, Energy Environ. Sci. 10, 528 (2017)

    Article  Google Scholar 

  7. D. Maurya, C.W. Ahn, S. Zhang, S. Priya, J. Am. Ceram. Soc. 93, 1225 (2010)

    Google Scholar 

  8. B. Jaffe, Piezoelectric Ceramics, Academic Press: New York, 328 (1971).

  9. H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 110 (2009)

    Article  Google Scholar 

  10. M.E. Lines, A.M. Glass, Oxford University Press. (2001)

  11. A.J. Moulson, J.M. Herbert, (Wiley, 2003), p. 576

  12. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, J. Appl. Phy. 92, 1489 (2002)

    Article  ADS  Google Scholar 

  13. T. Hirofumi, N. Yoshiki, T. Junji, T. Sadahiro, Jpn. J. Appl. Phy. 45, 7405 (2006)

    Article  Google Scholar 

  14. K. Tomoaki, Y. Kang, M. Toshiyuki, A. Masatoshi, Jpn. J. Appl. Phy. 46, 97 (2007)

    Article  Google Scholar 

  15. Y. Tsur, T. Dunbar, C. Randall, J. Electroceram. 7, 25 (2001)

    Article  Google Scholar 

  16. Y. Sakabe, Y. Hamaji, H. Sano, N. Wada, Jpn. J. Apll. Phys. 41, 5668 (2002)

    Article  ADS  Google Scholar 

  17. G. Dale, M. Conway, M. Strawhorne, J. McLaughlin, Ferroelectrics 448, 50 (2013)

    Article  Google Scholar 

  18. H. López, A. María, Int. J. Eng. Res. Sci. 4, 7 (2018)

    Google Scholar 

  19. J. Zhang, Y. Hou, M. Zheng, W. Jia, M. Zhu, H. Yan, J. Am. Ceram. Soc. 99, 1375 (2016)

    Article  Google Scholar 

  20. R. Seshadri, N.A. Hill, Chem. Mater. 13, 2892 (2001)

    Article  Google Scholar 

  21. D.S. Keeble, E.R. Barney, D.A. Keen, M.G. Tucker, J. Kreisel, P.A. Thomas, Advan. Func. Mater. 23, 185 (2013)

    Article  Google Scholar 

  22. R.E. Cohen, Nature 358, 136 (1992)

    Article  ADS  Google Scholar 

  23. M.S. Alkathy, K.J. Raju, Ceram. Internat. 44, 10367 (2018)

    Article  Google Scholar 

  24. D. Maurya, S. Priya, Int. Ferroelec. 166, 186 (2015)

    Article  Google Scholar 

  25. A.S. Attar, E.S. Sichani, S. Sharafi, J. Mater. Res. Tech. 6, 108 (2017)

    Article  Google Scholar 

  26. N. Sareecha, W.A. Shah, M.L. Mirza, A. Maqsood, M.S. Awan, Physica B: Cond. Mat. 530, 283 (2018)

    Article  ADS  Google Scholar 

  27. S. Wu, X. Wei, X. Wang, H. Yang, S. Gao, J. Mater. Sci. Tech. 26, 472 (2010)

    Article  Google Scholar 

  28. A. Kholodkova, A. Smirnov, M. Danchevskaya, Y. Ivakin, G. Muravieva, S. Ponomarev, V. Kolesov, Inorgan. 8(8), 1 (2020)

    Google Scholar 

  29. R.D. Shannon, Acta. Crystall. A. 32, 751 (1976)

    Article  Google Scholar 

  30. L. Gao, J. Zhai, X. Yao, Appl. Surf. Sci. 255, 4521 (2009)

    Article  ADS  Google Scholar 

  31. K.T. Kim, C.I. Kim, Surf. Coat. Technol. 200, 4708 (2006)

    Article  Google Scholar 

  32. A. Kerfah, K. Taïbi, A. Guehria-Laidoudi, A. Simon, J. Ravez Sol. St. Sc. 8, 613 (2006)

    Article  Google Scholar 

  33. L. Wu, M.C. Chure, K.K. Wu, W.C. Chang, M.J. Yang, W.K. Liu, Ceram. Int. 35, 957 (2009)

    Article  Google Scholar 

  34. M. Kuwabara, H. Matsuda, N. Kurata, E. Matsuyama, J. Am. Ceram. Soc. 80, 2590 (1997)

    Article  Google Scholar 

  35. D. Maurya, A. Kumar, V. Petkov, J.E. Mahaney, R.S. Katiyar, S. Priya, RSC Advan. 4, 1283 (2014)

    Article  ADS  Google Scholar 

  36. A. von Hippel, Rev. of Mod. Phy. 22, 221 (1950)

    Article  ADS  Google Scholar 

  37. W. Chen, X. Yao, X.Y. Wei, Appl. Phys. Lett. 90(182902), 1 (2007)

    Google Scholar 

  38. G. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925)

    Article  Google Scholar 

  39. X. Jiang, H. Hao, Y. Yang, E. Zhou, S. Zhang, P. Wei, M. Cao, Z. Yao, H. Liu, Journal of Materiomics 7, 295 (2021)

    Article  Google Scholar 

  40. R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  ADS  Google Scholar 

  41. B.E. Vugmeister, M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990)

    Article  ADS  Google Scholar 

  42. L. Cui, Y.D. Hou, S. Wang, C. Wang, M.K. Zhu, J. Appl. Physics. 107, 054105 (2010)

    Article  ADS  Google Scholar 

  43. V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, R.S. Katiyar, J. Mater. Sci. 48, 2151 (2013)

    Article  ADS  Google Scholar 

  44. I. Burn, D.M. Smyth, J. Mater. Sci. 7, 339 (1972)

    Article  ADS  Google Scholar 

  45. Q. Zhang, H. Tong, J. Chen, Y. Lu, T. Yang, X. Yao, Y. He, Appl. Phys. Lett. 109, 262901–1 (2016)

    Article  ADS  Google Scholar 

  46. A.E. Morales, E.S. Mora, U. Pal, Rev. Mex. Fis. S. 53(5), 18 (2007)

    Google Scholar 

  47. S.D. Xue, M.H. Liu, P. Zhang, W.H. Wong, D.L. Zhang, J. Lumin. 224, 117304 (2020)

    Article  Google Scholar 

  48. W.J.U. Leng, C.R. Yang, J.H. Zhang, H.W. Chen, H. Ji, C.L. Fu, J.X. Liao, J. Appl. Phys. 99, 114904 (2006)

    Article  ADS  Google Scholar 

  49. T. Badapanda, S. Parida, S.K. Rout, Mater. Lett. 185, 415 (2016)

    Article  Google Scholar 

  50. B. Choudhury, M. Dey, A. Choudhury, Int. Nano Lett. 3(25), 1 (2013)

    Google Scholar 

  51. N. Kumari, A. Ghosh, S. Tewari, A. Bhattacharjee, Ind. J. Phys. 88, 65 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Badapanda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, A.K., Badapanda, T. & Sarangi, S. Compositional induced structural, dielectric, ferroelectric and optical study of Bismuth modified Barium Titanate ceramic. Appl. Phys. A 127, 593 (2021). https://doi.org/10.1007/s00339-021-04747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04747-8

Keywords

Navigation