Skip to main content
Log in

Effect of Ba2+ doping on the structure and transport properties of Li6.28Al0.24La3Zr2O12 solid electrolyte

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Garnet-structured solid electrolyte materials have drawn much attention due to their high ionic conductivity and electrochemical stability. Doping strategy is found to be very helpful in enhancing the performance of garnet-based solid electrolytes. In the present study, Li6.28Al0.24La3Zr2O12 with different amounts of Ba2+ doping at La3+ site is prepared with the help of solid-state reaction method. Li6.38Al0.24La2.9Ba0.1Zr2O12 sintered at 1000° C shows stabilization of cubic phase having closely packed grains with ionic conductivity of 0.46 × 10–4 S/cm at 25°C and activation energy of 0.29 eV. The presence of a well-defined thermally activated relaxation process in the prepared material is confirmed by the frequency-dependent electrical modulus and dielectric spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Sun, B. Mao, Q. Wang, Fire Saf. J. (2020). https://doi.org/10.1016/j.firesaf.2020.103119

    Article  Google Scholar 

  2. Q. Wang, B. Mao, S.I. Stoliarov, J. Sun, Prog. Energy Combust. Sci. (2019). https://doi.org/10.1016/j.pecs.2019.03.002

    Article  Google Scholar 

  3. J. Liang, J. Luo, Q. Sun, X. Yang, R. Li, X. Sun, Energy Storage Mater. (2019). https://doi.org/10.1016/j.ensm.2019.06.021

    Article  Google Scholar 

  4. C. Wang, K.R. Adair, J. Liang, X. Li, Y. Sun, X. Li, J. Wang, Q. Sun, F. Zhao, X. Lin, R. Li, H. Huang, L. Zhang, R. Yang, S. Lu, X. Sun, Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201900392

    Article  Google Scholar 

  5. Y. Chen, K. Wen, T. Chen, X. Zhang, Energy Storage Mater. (2020). https://doi.org/10.1016/j.ensm.2020.05.019

    Article  Google Scholar 

  6. S. Chen, D. Xie, G. Liu, J.P. Mwizerwa, Q. Zhang, Y. Zhao, X. Xu, X. Yao, Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.02.020

    Article  Google Scholar 

  7. D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Chem (2019). https://doi.org/10.1016/j.chempr.2019.05.009

    Article  Google Scholar 

  8. J. Huang, F. Liang, M. Hou, Y. Zhang, K. Chen, D. Xue, Appl. Mater. Today (2020). https://doi.org/10.1016/j.apmt.2020.100750

    Article  Google Scholar 

  9. R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem. Int. Ed. (2007). https://doi.org/10.1002/anie.200701144

    Article  Google Scholar 

  10. C. Sun, Y. Ruan, W. Zha, W. Li, M. Cai, Z. Wen, Mater. Horiz. (2020). https://doi.org/10.1039/D0MH00050G

    Article  Google Scholar 

  11. J. Awaka, N. Kijima, H. Hayakawa, J. Akimoto, J. Solid State Chem. (2009). https://doi.org/10.1016/j.jssc.2009.05.020

    Article  Google Scholar 

  12. J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, J. Akimoto, Chem. Lett. (2011). https://doi.org/10.1246/cl.2011.60

    Article  Google Scholar 

  13. N. Bernstein, M.D. Johannes, PRL (2012). https://doi.org/10.1103/PhysRevLett.109.205702

    Article  Google Scholar 

  14. K. Meier, T. Laino, A. Curioni, J. Phys. Chem. C (2014). https://doi.org/10.1021/jp5002463

    Article  Google Scholar 

  15. C.A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, W. Weppner, Inorg. Chem. (2011). https://doi.org/10.1021/ic101914e

    Article  Google Scholar 

  16. C.L. Li, Y. Liu, J. He, K.S. Brinkman, J. Alloy. Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.11.277

    Article  Google Scholar 

  17. L. Dhivya, K. Karthik, S. Ramakumar, R. Murugan, RSC Adv. (2015). https://doi.org/10.1039/C5RA18543B

    Article  Google Scholar 

  18. E. Rangasamy, J. Wolfenstine, J. Sakamoto, Solid State Ion. (2012). https://doi.org/10.1016/j.ssi.2011.10.022

    Article  Google Scholar 

  19. J.F. Wu, E.Y. Chen, Y. Yu, L. Liu, Y. Wu, W.K. Pang, V.K. Peterson, X. Guo, A.C.S. Appl, Mater. Interfaces (2017). https://doi.org/10.1021/acsami.6b13902

    Article  Google Scholar 

  20. L. Dhivya, N. Janani, B. Palanivel, R. Murugan, AIP Adv. (2013). https://doi.org/10.1063/1.4818971

    Article  Google Scholar 

  21. S. Ohta, T. Kobayashi, T. Asaoka, J. Power Sources (2011). https://doi.org/10.1016/j.jpowsour.2010.11.089

    Article  Google Scholar 

  22. S. Song, B. Chen, Y. Ruan, J. Sun, L. Yu, Y. Wang, J. Thokchom, Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2018.03.101

    Article  Google Scholar 

  23. R. Inada, K. Kusakabe, T. Tanaka, S. Kudo, Y. Sakurai, Solid State Ionics (2014). https://doi.org/10.1016/j.ssi.2013.09.008

    Article  Google Scholar 

  24. C. Shao, Z. Yu, H. Liu, Z. Zheng, N. Sun, C. Diao, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2016.12.140

    Article  Google Scholar 

  25. E. Rangasamy, J. Wolfenstine, J. Allen, J. Sakamoto, J. Power Sources (2013). https://doi.org/10.1016/j.jpowsour.2012.12.076

    Article  Google Scholar 

  26. C. Deviannapoorani, L.S. Shankar, S. Ramakumar, R. Murugan, Ionics (2016). https://doi.org/10.1007/s11581-016-1674-5

    Article  Google Scholar 

  27. A. Dumon, M. Huang, Y. Shen, C.W. Nan, Solid State Ion. (2013). https://doi.org/10.1016/j.ssi.2013.04.016

    Article  Google Scholar 

  28. D. Wang, G. Zhong, O. Dolotko, Y. Li, M.J. McDonald, J. Mi, R. Fud, Y. Yang, J. Mater. Chem. (2014). https://doi.org/10.1039/c4ta03591g

    Article  Google Scholar 

  29. D.O. Shin, K. Oh, K.M. Kim, K.Y. Park, B. Lee, Y.G. Lee, K. Kang, Sci. Rep. (2015). https://doi.org/10.1038/srep18053

    Article  Google Scholar 

  30. T. Yang, Y. Li, W. Wu, Z. Cao, W. He, Y. Gao, J. Liu, G. Li, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2017.10.072

    Article  Google Scholar 

  31. Y. Meesala, Y.K. Liao, A. Jena, N.H. Yang, W.K. Pang, S.F. Hu, H. Chang, C.E. Liu, S.C. Liao, J.M. Chen, X. Guo, R.S. Liu, J. Mater. Chem. A (2019). https://doi.org/10.1039/C9TA00417C

    Article  Google Scholar 

  32. Y. Luo, X. Li, Y. Zhang, L. Ge, H. Chen, L. Guo, Electrochim. Acta (2019). https://doi.org/10.1016/j.electacta.2018.10.078

    Article  Google Scholar 

  33. J.F. Wu, W.K. Pang, V.K. Peterson, L. Wei, X. Guo, A.C.S. Appl, Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b00614

    Article  Google Scholar 

  34. X. Li, R. Li, S. Chu, K. Liao, R. Cai, W. Zhou, Z. Shao, J. Alloy. Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.04.274

    Article  Google Scholar 

  35. J. Gai, E. Zhao, F. Ma, D. Sun, X. Ma, Y. Jin, Q. Wu, Y. Cui, J. Eur. Ceram. Soc. (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.002

    Article  Google Scholar 

  36. B.P. Dubey, A. Sahoo, V. Thangadurai, Y. Sharma, Solid State Ion. (2020). https://doi.org/10.1016/j.ssi.2020.115339

    Article  Google Scholar 

  37. W. Gu, M. Ezbiri, R.P. Rao, M. Avdeev, S. Adams, Solid State Ion. (2015). https://doi.org/10.1016/j.ssi.2015.03.019

    Article  Google Scholar 

  38. Y. Jin, P.J. McGinn, J. Power Sources (2011). https://doi.org/10.1016/j.jpowsour.2011.05.065

    Article  Google Scholar 

  39. R.D. Shannon, Handbook of Chemistry and Physics, 74th edn. (CRC Press, Boca Raton, FL, 1974)

    Google Scholar 

  40. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  41. A. Sodhiya, R. Kumar, S. Patel, A.K. Singh, S. Soni, AIP Conf. Proc. (2020). https://doi.org/10.1063/5.0019544

    Article  Google Scholar 

  42. S. Ramakumar, L. Satyanarayana, S.V. Manorama, R. Murugan, Phys. Chem. Chem. Phys. (2013). https://doi.org/10.1039/C3CP50991E

    Article  Google Scholar 

  43. J.H. Joshia, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Mater. Res. Bull. (2017). https://doi.org/10.1016/j.materresbull.2017.04.013

    Article  Google Scholar 

  44. D.M. Abdel-Basset, S. Mulmi, M.S. El-Bana, S.S. Fouad, V. Thangadurai, Inorg. Chem. (2017). https://doi.org/10.1021/acs.inorgchem

    Article  Google Scholar 

  45. J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, USA, 1987)

    Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge sophisticated instrument center (SIC) for XRD, SEM characterization and department of chemistry for impedance measurement of Dr. Harisingh Gour Vishwavidyalaya, Sagar (MP), India.

Funding

This work was supported by UGC non-NET fellowship.

Author information

Authors and Affiliations

Authors

Contributions

RK has made substantial contribution in conceptualization and design of experiment, and AKS and SS have substantial contribution in acquisition and interpretation of data. AS has contribution in conceptualization, acquisition and interpretation of data and drafting the manuscript.

Corresponding author

Correspondence to Anubha sodhiya.

Ethics declarations

Conflicts of interest

The authors have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

sodhiya, A., kumar, R., singh, A.k. et al. Effect of Ba2+ doping on the structure and transport properties of Li6.28Al0.24La3Zr2O12 solid electrolyte. Appl. Phys. A 127, 584 (2021). https://doi.org/10.1007/s00339-021-04729-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04729-w

Keywords

Navigation