Skip to main content

Advertisement

Log in

Band gap energy of the dilute oxygen CdxZn1-xOyTe1-y

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The main problem in investigating the band gap energy of the dilute oxygen CdxZn1-xOyTe1-y is how to set up a model to predict its band gap energy in a wide composition range. In this work, a model predicting the band gap energy of the dilute oxygen CdxZn1-xOyTe1-y is established. The result shows that the model can offer an excellent estimation. Three findings are as follows. (1) Incorporating Cd fraction in the dilute oxygen ZnOyTe1-y alloy can lower the Г CBM of CdxZn1-xOyTe1-y, resulting in a complex alteration of the coupling interaction between the oxygen level and the Г CBM of CdxZn1-xTe. (2) The variations of the cation and anion fractions influence the different parts of the parameter which describes the coupling interaction. (3) The localized oxygen level can not only be lined up in the common-cation systems, but also be lined up in common-anion systems if the small location differences in the different host materials are ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Tanaka, K. Mizoguchi, T. Terasawa, Y. Okano, K. Saito, Q. Guo, M. Nishio, K.M. Yu, W. Walukiewicz, Appl. Phys. Expr. 9, 021202 (2016)

    Article  ADS  Google Scholar 

  2. T. Tanaka, Y. Nagao, T. Mochinaga, K. Saito, Q. Guo, M. Nishio, K.M. Yu, W. Walukiewicz, J. Crys, Growth 378, 259 (2013)

    Article  Google Scholar 

  3. T. Tanaka, R. Reis, M.J. Jaquez, O.D. Dubon, S.S. Mao, K.M. Yu, Wladek Walukiewicz, Appl. Phys. Lett. 100, 011905 (2012)

    Article  ADS  Google Scholar 

  4. C.Y. Moon, S.H. Wei, Y.Z. Zhu, G.D. Chen, Phys. Rev. B 74, 233202 (2006)

    Article  ADS  Google Scholar 

  5. T. Tanaka, K. Mizoguchi, T. Terasawa, Y. Okano, K. Saito, Q. Guo, M. Nishio, K. M. Yu, and W. Walukiewicz, Proceedings of the 42nd IEEE Photovol. Spec. Conference, New Orleans, IEEE, New York, June 14–19 (2015)

  6. T. Tanaka, T. Terasawa, Y. Okano, S. Tsutsumi, K. Saito, Q. Guo, M. Nishio, K.M. Yu, W. Walukiewicz, Sol. Energ Mat. Sol. C 169, 1 (2017)

    Article  Google Scholar 

  7. M. Welna, Ł Janicki, W.M. Linhart, T. Tanaka, K.M. Yu, R. Kudrawiec, W. Walukiewicz, J. Appl. Phys. 126, 083106 (2019)

    Article  ADS  Google Scholar 

  8. S.H. Wei, A. Zunger, Phys. Rev. Lett. 76, 664 (1996)

    Article  ADS  Google Scholar 

  9. C.Z. Zhao, R. Zhang, B. Liu, M. Li, X.Q. Xiu, Z.L. Xie, Y.D. Zheng, Chin. Phys. Lett. 30, 076101 (2013)

    Article  ADS  Google Scholar 

  10. Y.-H. Li, A. Walsh, S. Chen, W.-J. Yin, J.-H. Yang, J. Li, Juarez L. F. Da, X.G. Silva, Gong, and S.-H. Wei, , Appl. Phys. Lett. 94, 212109 (2009)

    Article  ADS  Google Scholar 

  11. O. Zelaya-Angel, J.G. Mendoza-Alvarez, M. Becerril, H. Navarro-Contreras, L. Tirado-Mejía, J. Appl. Phys. 95, 6284 (2004)

    Article  ADS  Google Scholar 

  12. E.M. Larramendi, E. Purón, O. de Melo, Semicond. Sci. Technol. 17, 8 (2002)

    Article  ADS  Google Scholar 

  13. M. Wełna, R. Kudrawiec, Y. Nabetani, T. Tanaka, M. Jaquez, O.D. Dubon, K.M. Yu, W. Walukiewicz, Semicond. Sci. Technol. 30(085018), 8 (2015)

    Google Scholar 

  14. I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003)

    Article  ADS  Google Scholar 

  15. C.Z. Zhao, Q. Fu, T. Wei, S.S. Wang, K.Q. Lu, J. Electron. Mater. 46, 1546 (2017)

    Article  ADS  Google Scholar 

  16. C.Z. Zhao, T. Wei, X.D. Sun, S.S. Wang, K.Q. Lu, J. Mater. Sci. Mater. Electron 27, 550 (2016)

    Article  Google Scholar 

  17. C.Z. Zhao, X.T. Li, X.D. Sun, S.S. Wang, J. Wang, J. Electron. Mater. 48, 1599 (2019)

    Article  ADS  Google Scholar 

  18. J. Li, S.-H. Wei, Phys. Rev. B 73, 041201 (2006)

    Article  ADS  Google Scholar 

  19. C.Y. Moon, S.H. Wei, Phys. Rev. B. 74, 233202 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Nature Science Foundation of China (61874077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Zhen Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CZ., Wang , YL., Sun, XD. et al. Band gap energy of the dilute oxygen CdxZn1-xOyTe1-y. Appl. Phys. A 127, 562 (2021). https://doi.org/10.1007/s00339-021-04710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04710-7

Keywords

Navigation