Skip to main content
Log in

Synthesis of Ag/Co nanoparticles by dual pulsed laser ablation for synergistic photothermal study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magneto-plasmonic nanoparticles have gained increasing interest, especially for the synergistic response study of hyperthermia applications. However, some challenges, including the synthesis process, dose optimization of laser, and magnetic field strength besides its frequency, need significant attention. Herein, we prepared magneto-plasmonic Ag/Co nanomaterials for photothermal performance evaluation using dual-beam of the Q-switched Nd:YAG 1064 nm pulsed laser ablation in distilled water, which can avoid any additive, contaminations, complicated route, and multiple purifications processes as they may occur in chemical synthesis processes. Properties, morphologies, and compositions of synthesized nanomaterials were studied, and results suggested that the main constituents of NPs were Ag/Co. The detailed theoretical calculation of the photothermal performance of nanofluid is described, along with an experimental study of nanofluid and the water as a reference medium using NIR 808 nm laser. The overall results suggest that the higher temperatures for Ag/Co nanofluid compared with water alone were recorded as 16.5 °C, 20.9 °C, 24.7 °C, 24.5 °C, 27.7 °C, and 30.2 °C during 808 nm laser irradiation operating at different corresponding powers, respectively. The possible reason for the higher temperature profiles and the rapid temperature rise of nanofluid than water alone is the localized surface plasmon effects of nanoparticles. These results evidence that silver and cobalt nanomaterials composite structures could significantly increase hyperthermia based on an effective and simple synthesis approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Fang and Y.-C. Chen, C. pharmaceutical design, 19, 6622 (2013).

  2. Y. Hu, R. Wang, S. Wang, L. Ding, J. Li, Y. Luo, X. Wang, M. Shen, X. Shi, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  3. Z. H. Liu, X. F. Yang, G. L. Guo, J. Appl. Phys. 102, (2007).

  4. H. Zoubos, L. E. Koutsokeras, D. F. Anagnostopoulos, E. Lidorikis, S. A. Kalogirou, A. R. Wildes, P. C. Kelires, and P. Patsalas, Sol. Energy Mater. Sol. Cells 117, 350 (2013)

  5. S. Lee, R. George Thomas, M. Ju Moon, H. Ju Park, I. K. Park, B. Il Lee, Y. Yeon Jeong, Sci. Rep. 7, 1 (2017).

  6. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, Nat. Photonics 10, 393 (2016)

    Article  ADS  Google Scholar 

  7. Y. Hernández, B. C. Galarreta, Nanomater. Magn. Opt. Hyperth. Appl., 83–109 (2018).

  8. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, Nat. Methods 5, 763 (2008)

    Article  Google Scholar 

  9. K. Cherukula, K. Manickavasagam Lekshmi, S. Uthaman, K. Cho, C.-S. Cho, I.-K. Park, Nanomaterials 6, 76 (2016).

  10. P. Pan, Y. Lin, Z. Gan, X. Luo, W. Zhou, and N. Zhang, J. Appl. Phys. 123, 115115 (2018).

  11. Z. Qin, M. Etheridge, J. C. Bischof, Energy-Based Treat. Tissue Assess. VI, edited by T. P. Ryan (SPIE, 2011), p. 79010C.

  12. H. Xiang, H. J. Lin, T. Niu, Z. Chen, L. Aigouy, J. Appl. Phys. 125, (2019).

  13. X. Liu, H. J. Chen, X. Chen, Y. Alfadhl, J. Yu, D. Wen, J. Appl. Phys. 115, (2014).

  14. T. Cantu, K. Walsh, V.P. Pattani, A.J. Moy, J.W. Tunnell, J.A. Irvin, T. Betancourt, Int. J. Nanomedicine 12, 615 (2017)

    Article  Google Scholar 

  15. M. Yamada, M. Foote, and Tarl. W Prow, nanobiotechnology, 7, 428 (2015)

  16. C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Nano Lett. 11, 2560 (2011)

    Article  ADS  Google Scholar 

  17. X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan, Int. J. Mol. Sci. 17, 1534 (2016)

    Article  Google Scholar 

  18. A. Katiyar, T. Nandi, N. E. Prasad, J. Appl. Phys. 125, (2019).

  19. T.E. Torres, E. Lima, M.P. Calatayud, B. Sanz, A. Ibarra, R. Fernández-Pacheco, A. Mayoral, C. Marquina, M.R. Ibarra, G.F. Goya, Sci. Rep. 9, 1 (2019)

    Google Scholar 

  20. R. Hu, M. Zheng, J. Wu, C. Li, D. Shen, D. Yang, L. Li, M. Ge, Z. Chang, W. Dong, Nanomaterials 7, 111 (2017)

    Article  Google Scholar 

  21. Z. Swiatkowska-Warkocka, Kenji Koga, Kenji Kawaguchi, Hongqiang Wang, Alexander Pyatenko, and Naoto Koshizaki, RSC Adv. 3, 79 (2012).

  22. A. S. Vijayanandan, R. S. Kandath Valappil, and R. M. Balakrishnan, Sustain. Energy Technol. Assessments 37, 100598 (2020).

  23. T. Bala, S.K. Arumugam, R. Pasricha, B.L.V. Prasad, M. Sastry, J. Mater. Chem. 14, 1057 (2004)

    Article  Google Scholar 

  24. Z. Khan, S.A. Al-Thabaiti, A.Y. Obaid, M.A. Malik, M.N. Khan, T.A. Khan, J. Mol. Liq. 222, 272 (2016)

    Article  Google Scholar 

  25. K. Santhi, D. Kumarsan, N. Vengidusamy, S. Arumainathan, J. Magn. Magn. Mater. 433, 202 (2017)

    Article  ADS  Google Scholar 

  26. L. Wang, C. Clavero, Z. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, Nano Lett. 11, 1237 (2011).

  27. V. Amendola, M. Meneghetti, O. M. Bakr, P. Riello, S. Polizzi, D. H. Anjum, S. Fiameni, P. Arosio, T. Orlando, C. de J. Fernandez, F. Pineider, C. Sangregorio, and A. Lascialfari, Nanoscale 5, 5611 (2013).

  28. E. V Barmina and G. A. Shafeev, Quantum Electron. 48, 637 (2018).

  29. F. Bertorelle, M. Pinto, R. Zappon, R. Pilot, L. Litti, S. Fiameni, G. Conti, M. Gobbo, G. Toffoli, M. Colombatti, G. Fracasso, M. Meneghetti, Nanoscale 10, 976 (2018)

    Article  Google Scholar 

  30. G. C. Messina, M. G. Sinatra, V. Bonanni, R. Brescia, A. Alabastri, F. Pineider, G. Campo, C. Sangregorio, G. Li-Destri, G. Sfuncia, G. Marletta, M. Condorelli, R. P. Zaccaria, F. De Angelis, and G. Compagnini, J. Phys. Chem. C. 120, 12810 (2016).

  31. P. Wagener, J. Jakobi, C. Rehbock, V.S.K. Chakravadhanula, C. Thede, U. Wiedwald, M. Bartsch, L. Kienle, S. Barcikowski, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  32. V. Amendola, S. Scaramuzza, S. Agnoli, G. Granozzi, M. Meneghetti, G. Campo, V. Bonanni, F. Pineider, C. Sangregorio, P. Ghigna, S. Polizzi, P. Riello, S. Fiameni, L. Nodari, Nano Res. 8, 4007 (2015)

    Article  Google Scholar 

  33. K. Liu, J. Chen, H. Qu, Y. Dong, Y. Gao, J. Liu, X. Liu, Y. Zou, H. Zeng, Appl. Phys. Lett. 113, (2018).

  34. S. Mandal and K. M. Krishnan, J. Mater. Chem. 17, 372 (2007).

  35. Y. Song, J. Ding, and Y. Wang, J. Phys. Chem. C. 116, 11343 (2012).

  36. J. Garcia-Torres, E. Vallés, and E. Gómez, J. Nanoparticle Res. 12, 2189 (2010).

  37. J. R. González-Castillo, E. Rodriguez, E. Jimenez-Villar, D. Rodríguez, I. Salomon-García, G. F. De Sá, T. García-Fernández, D. B. Almeida, C. L. Cesar, R. Johnes, and J. C. Ibarra, N. research letters, 10, 1 (2015).

  38. A. Ashok, A. Kumar, F. Tarlochan, Nanomaterials 8, 604 (2018)

    Article  Google Scholar 

  39. N. C. Shin, Y. H. Lee, Y. H. Shin, J. Kim, and Y. W. Lee, Mater. Chem. Phys. 124, 140 (2010).

  40. S. Hu, G. Goenaga, C. Melton, T.A. Zawodzinski, D. Mukherjee, Appl. Catal. B Environ. 182, 286 (2016)

    Article  Google Scholar 

  41. S. Papp, R. Patakfalvi, and I. Dekany, CROATICA CHEMICA ACTA, 80, 493 (2007).

  42. A. Henglein, J. Phys. Chem. 97, 5457 (2002).

  43. G.X. Chen, M.H. Hong, B. Lan, Z.B. Wang, Y.F. Lu, T.C. Chong, Appl. Surf. Sci. 228, 169 (2004)

    Article  ADS  Google Scholar 

  44. S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen, and K. J. Klabunde, 28, 3174 (1992).

  45. D. Srikala, V.N. Singh, A. Banerjee, B.R. Mehta, S. Patnaik, J. Phys. Chem. C 112, 13882 (2008)

    Article  Google Scholar 

  46. J. B. Tracy, D. N. Weiss, D. P. Dinega, M. G. Bawendi, Phys. Rev. B Condens. Matter Mater. Phys. 72, 064404 (2005).

  47. J. R. Childress and C. L. Chien, Phys. Rev. B 43, 8089 (1991).

  48. A. Furube, S. Hashimoto, NPG Asia Mater. 9, e454 (2017).

  49. J. Guo, K. Rahme, Y. He, L.-L. Li, J. D. Holmes, and C. M. O’Driscoll, Int. J. Nanomedicine 12, 6131 (2017).

  50. Q. Jiang, W. Zeng, C. Zhang, Z. Meng, J. Wu, Q. Zhu, D. Wu, and H. Zhu, Sci. Rep. 7, 1 (2017).

  51. T. Boldoo, J. Ham, E. Kim, H. Cho, Energies 13, 5748 (2020)

    Article  Google Scholar 

  52. D.K. Roper, W. Ahn, M. Hoepfner, J. Phys. Chem. C 111, 3636 (2007)

    Article  Google Scholar 

  53. F. Wo, R. Xu, Y. Shao, Z. Zhang, M. Chu, D. Shi, S. Liu, Theranostics 6, 485 (2016)

    Article  Google Scholar 

  54. P. Kaur, M.L. Aliru, A.S. Chadha, A. Asea, S. Krishnan, Int. J. Hyperth. 32, 76 (2016)

    Article  Google Scholar 

  55. R. Mendes, P. Pedrosa, J.C. Lima, A.R. Fernandes, P.V. Baptista, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  56. H. Chen, L. Shao, T. Ming, Z. Sun, C. Zhao, B. Yang, J. Wang, Small 6, 2272 (2010)

    Article  Google Scholar 

  57. J.T. Jørgensen, K. Norregaard, P. Tian, P.M. Bendix, A. Kjaer, L.B. Oddershede, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  58. E. Petryayeva, U.J. Krull, Anal. Chim. Acta 706, 8 (2011)

    Article  Google Scholar 

  59. T.M. Liu, J. Conde, T. Lipiński, A. Bednarkiewicz, C.C. Huang, NPG Asia Mater. 8, 295 (2016)

    Article  Google Scholar 

  60. B. Cheng, H. He, T. Huang, S.S. Berr, J. He, D. Fan, J. Zhang, P. Xu, J. Biomed. Nanotechnol. 12, 435 (2016)

    Article  Google Scholar 

  61. Q. Jiang, W. Zeng, C. Zhang, Z. Meng, J. Wu, Q. Zhu, D. Wu, H. Zhu, Sci. Rep. 7, 1 (2017)

    Article  ADS  Google Scholar 

  62. S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas, Chem. Phys. Lett. 288, 243 (1998)

    Article  ADS  Google Scholar 

  63. C. Justin, S.A. Philip, A.V. Samrot, Appl. Nanosci. 7, 463 (2017)

    Article  ADS  Google Scholar 

  64. A. Espinosa, R. Di Corato, J. Kolosnjaj-Tabi, P. Flaud, T. Pellegrino, C. Wilhelm, ACS Nano 10, 2436 (2016)

    Article  Google Scholar 

  65. M. Wu, S. Huang, Mol. Clin. Oncol. 7, 738 (2017)

    Article  Google Scholar 

  66. R. Lv, P. Yang, B. Hu, J. Xu, W. Shang, J. Tian, ACS Nano 11, 1064 (2017)

    Article  Google Scholar 

  67. A.F. Bagley, S. Hill, G.S. Rogers, S.N. Bhatia, ACS Nano 7, 8089 (2013)

    Article  Google Scholar 

  68. S.C. Boca, M. Potara, A.M. Gabudean, A. Juhem, P.L. Baldeck, S. Astilean, Cancer Lett. 311, 131 (2011)

    Article  Google Scholar 

  69. J. Zhao, C. Zhou, M. Li, J. Li, G. Li, D. Ma, Z. Li, D. Zou, Oncotarget 8, 106707 (2017).

  70. Z. Wang, S. Li, M. Zhang, Y. Ma, Y. Liu, W. Gao, J. Zhang, Y. Gu, Adv. Sci. 4, 1600327 (2017)

    Article  Google Scholar 

  71. A. Bucharskaya, G. Maslyakova, G. Terentyuk, A. Yakunin, Y. Avetisyan, O. Bibikova, E. Tuchina, B. Khlebtsov, N. Khlebtsov, V. Tuchin, Int. J. Mol. Sci. 17, 1295 (2016)

    Article  Google Scholar 

  72. M. Mehrali, M.K. Ghatkesar, R. Pecnik, Appl. Energy 224, 103 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Imran Ali and Yunxiang Pan contributed equally to this work. This work was financially supported by the Fundamental Research Funds for the Central Universities (No.30919011253, No.30918011335), National Natural Science Foundation of China (No.61975080, No.61805120), Natural Science Foundation of Jiangsu Province (BK20181296), Large Equipment Open Fund from Nanjing University of Science and Technology. Yasir Jamil is thankful to the Higher Education Commission of Pakistan for financial support under project No NRPU-6409.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Chen or Zhonghua Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Co-first author: Imran Ali, Yunxiang Pan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 573 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, I., Pan, Y., Lin, Y. et al. Synthesis of Ag/Co nanoparticles by dual pulsed laser ablation for synergistic photothermal study. Appl. Phys. A 127, 632 (2021). https://doi.org/10.1007/s00339-021-04706-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04706-3

Keywords

Navigation