Skip to main content
Log in

Josephson current in a quantum dot coupled to a topological superconducting α-helical protein

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the topological properties of a topological superconducting α-helical protein. It is shown that the Majorana zero modes can be formed at both ends of the topological superconducting α-helical protein with non-trivial phase. Our results indicate that the gate field can affect the topological phase. Employing Green’s function method, we investigate the Josephson current through a quantum dot side coupled to a topological superconducting α-helical protein. Due to leakage of the Majorana zero mode, the Josephson current shows a trivial/non-trivial phase transition. The results can be used to probe the existence of the Majorana zero mode in protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Aguado, Riv. Nuovo Cimento 40, 523 (2017)

    Google Scholar 

  2. C.W.J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013)

    Article  ADS  Google Scholar 

  3. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  4. R.M. Lutchyn, J.D. Sau, S. Das Sarma, Phys. Rev. Lett. 105, 077001 (2010)

    Article  ADS  Google Scholar 

  5. X.L. Qi, S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  6. L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008)

    Article  ADS  Google Scholar 

  7. Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 177002 (2010)

    Article  ADS  Google Scholar 

  8. J. Wang, S. Liu, Phys. Rev. B 85, 035402 (2012)

    Article  ADS  Google Scholar 

  9. Z. Hou, Y.X. Xing, A.M. Guo, Q.F. Sun, Phys. Rev. B 94, 064516 (2016)

    Article  ADS  Google Scholar 

  10. A.R. Akhmerov, J.P. Dahlhaus, F. Hassler, M. Wimmer, C.W.J. Beenakker, Phys. Rev. Lett. 106, 057001 (2011)

    Article  ADS  Google Scholar 

  11. L. Fu, C.L. Kane, Phys. Rev. Lett. 102, 216403 (2009)

    Article  ADS  Google Scholar 

  12. W.J. Gong, S.F. Zhang, Z.C. Li, G. Yi, Y.S. Zheng, Phys. Rev. B 89, 245413 (2014)

    Article  ADS  Google Scholar 

  13. M.S. Choi, M. Lee, K. Kang, W. Belzig, Phys. Rev. B 70, 020502 (2004)

    Article  ADS  Google Scholar 

  14. A.A. Golubov, M.Y. Kupriyanov, E. Ll’ichev. Rev. Mod. Phys. 76, 411 (2004)

    Article  ADS  Google Scholar 

  15. G. Kells, D. Meidan, P.W. Brouwer, Phys. Rev. B 86, 100503 (2012)

    Article  ADS  Google Scholar 

  16. E.J.H. Lee, X. Jiang, R. Aguado, G. Katsaros, C.M. Lieber, S. De. Franceschi, Phys. Rev. Lett. 109, 186802 (2012)

    Article  ADS  Google Scholar 

  17. E.J.H. Lee, X. Jiang, M. Houzet, R. Aguado, C.M. Lieber, S. De. Franceschi, Nat. Nanotechnol. 9, 79 (2014)

    Article  ADS  Google Scholar 

  18. E. Vernek, P.H. Penteado, A.C. Seridonio, J.C. Egues, Phys. Rev. B 89, 165314 (2014)

    Article  ADS  Google Scholar 

  19. A.M. Guo, Q.F. Sun, Phys. Rev. B 95, 155411 (2017)

    Article  ADS  Google Scholar 

  20. A.M. Guo, Q.F. Sun, Phys. Rev. B 86, 035424 (2012)

    Article  ADS  Google Scholar 

  21. T.R. Pan, A.M. Guo, Q.F. Sun, Phys. Rev. B 92, 115418 (2015)

    Article  ADS  Google Scholar 

  22. H.Z. Tang, Q.F. Sun, J.J. Liu, Y.T. Zhang, Phys. Rev. B 99, 235427 (2019)

    Article  ADS  Google Scholar 

  23. A.M. Guo, Q.F. Sun, Proc. Natl. Acad. Sci. USA 111, 11658 (2014)

    Article  ADS  Google Scholar 

  24. O.B. Dor, S. Yochelis, S. Mathew, R. Naaman, Y. Paltiel, Nat. Commun. 4, 2256 (2013)

    Article  ADS  Google Scholar 

  25. A.M. Guo, P.J. Hu, X.H. Gao, T.F. Fang, Q.F. Sun, Phys. Rev. B 102, 155402 (2020)

    Article  ADS  Google Scholar 

  26. C.T. Shih, S. Roche, R.A. Römer, Phys. Rev. Lett. 100, 018105 (2008)

    Article  ADS  Google Scholar 

  27. Z.G. Yu, X. Song, Phys. Rev. Lett. 86, 6018 (2001)

    Article  ADS  Google Scholar 

  28. Y.T. Zhang, Z. Hou, X.C. Xie, Q.F. Sun, Phys. Rev. B 95, 245433 (2017)

    Article  ADS  Google Scholar 

  29. I.A. Sadovskyy, G.B. Lesovik, G. Blatter, T. Jonckheere, T. Martin, Phys. Rev. B 85, 125442 (2012)

    Article  ADS  Google Scholar 

  30. Q.F. Sun, X.C. Xie, J. Phys.: Condens. Matter. 21, 344204 (2009)

    Google Scholar 

  31. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  32. Y.J. Yan, H. Zhang, J. Theor. Comput. Chem. 1, 225 (2002)

    Article  Google Scholar 

  33. K. Senthilkumar, F.C. Grozema, C.F. Guerra, F.M. Bickelhaupt, F.D. Lewis, Y.A. Berlin, M.A. Ratner, L.D.A. Siebbeles, J. Am. Chem. Soc. 127, 14894 (2005)

    Article  Google Scholar 

  34. L.G.D. Hawke, G. Kalosakas, C. Simserides, Eur. Phys. J. E 32, 291 (2010)

    Article  Google Scholar 

  35. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)

    MATH  Google Scholar 

  36. Y.X. Zeng, C. Lei, G. Chaudhary, A.H. MacDonald, Phys. Rev. B 97, 081102(R) (2018)

    Article  ADS  Google Scholar 

  37. M. Wimmer, A.C.M. Trans, Math. Software 38, 30 (2012)

    Article  Google Scholar 

  38. T.D. Stanescu, R.M. Lutchyn, S. Das Sarma, Phys. Rev. B 87, 094518 (2013)

    Article  ADS  Google Scholar 

  39. J. Hubbard, Proc. R. Soc. A 276, 238 (1963)

    ADS  Google Scholar 

  40. D.A. Ruiz-Tijerina, E. Vernek, L.G.G.V. Dias da Silva, J.C. Egues, Phys. Rev. B 91, 115435 (2015)

    Article  ADS  Google Scholar 

  41. R.G. Endres, D.L. Cox, R.R. Singh, Rev. Mod. Phys. 76, 195 (2004)

    Article  ADS  Google Scholar 

  42. E.L. Albuquerque, U.L. Fulco, V.N. Freire, E.W.S. Caetano, M.L. Lyra, F.A.B.F. de Mourad, Phys. Rep. 535, 139 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. L.L. Nian, L. Bai, W.T. Yu, J. Tang, H.C. Li, R. Zhang, R.Q. Wang, X.F. Wang, M. Wierzbicki, Phys. Rev. Applied 12, 024025 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 12004264) and Natural Science Foundation of Hebei Province (Grant No. A2019210124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Zhao Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, HZ., Ding, GJ. & Guo, XW. Josephson current in a quantum dot coupled to a topological superconducting α-helical protein. Appl. Phys. A 127, 516 (2021). https://doi.org/10.1007/s00339-021-04643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04643-1

Keywords

Navigation