Skip to main content
Log in

Transition from incoherent to coherent random lasing by adjusting silver nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The features of silver nanowire random laser (different sizes and concentrations)-based random lasers with a fixed concentration of laser dye rhodamine B pumped by a nanosecond pulsed laser were indicated. It was shown that the sizes and concentrations of scattering centers greatly affect the optical amplification mechanism, thresholds, narrowing the emission intensity and then the transition from the incoherent to a coherent type of random laser. The emergence of spikes and the increase in their number are also discussed under the influence of the size and concentration of silver (Ag) nanowires. The gain narrowing and the enhancement factor were calculated to reinforce obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig.5
Fig.6

Similar content being viewed by others

References

  1. D.S. Wiersma, The physics and applications of random lasers. Nat. Phys. 4(5), 359–367 (2008). https://doi.org/10.1038/nphys971

    Article  Google Scholar 

  2. F. Tenopala-Carmona, C. García-Segundo, N. Cuando-Espitia, J. Hernández-Cordero, Angular distribution of random laser emission. Opt. Lett. 39(3), 655 (2014). https://doi.org/10.1364/ol.39.000655

    Article  ADS  Google Scholar 

  3. N. A. I. M. Kamil et al. (2020) Principles and characteristics of random lasers and their applications in medical, bioimaging and biosensing. AIP Conf. Proc. 2203. Doi: https://doi.org/10.1063/1.5142109

  4. R.A. Ejbarah, J.M. Jassim, S.M. Hamidi, Random laser action under picosecond laser pumping. Opt. Quantum Electron. (2020). https://doi.org/10.1007/s11082-020-02543-x

    Article  Google Scholar 

  5. C.-W. Chen, H.-C. Jau, C.-T. Wang, C.-H. Lee, I.C. Khoo, T.-H. Lin, Random lasing in blue phase liquid crystals. Opt. Express 20(21), 23978 (2012). https://doi.org/10.1364/oe.20.023978

    Article  ADS  Google Scholar 

  6. R.C. Polson, M.E. Raikh, Z.V. Vardeny, Random lasing from weakly scattering media: universality in the emission spectra from pi-conjugated polymer films, cond-mat/0105360v1 (2013)

  7. F. Luan, B. Gu, A.S.L. Gomes, K.T. Yong, S. Wen, P.N. Prasad, Lasing in nanocomposite random media. Nano Today 10(2), 168–192 (2015). https://doi.org/10.1016/j.nantod.2015.02.006

    Article  Google Scholar 

  8. H. Cao, J.Y. Xu, S.H. Chang, S.T. Ho, Transition from amplified spontaneous emission to laser action in strongly scattering media. Phys. Rev. E – Stat. Phys. Plasmas, Fluids, Relat. Interdiscip. Top. 61(2), 1985–1989 (2000). https://doi.org/10.1103/PhysRevE.61.1985

    Article  ADS  Google Scholar 

  9. R.A. Ejbarah, J.M. Jassim, S.M. Hamidi, The effect of dye concentration and cell thickness on dye–polymer random laser action. Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-02742-0

    Article  Google Scholar 

  10. S. Chauhan, S. Mukherjee, A. Varanytsia, C. TsungHou, L. Zou, L.-C. Chien, Efficient random lasing in topologically directed assemblies of blue-phase liquid crystal microspheres. Opt. Mater. Express 10(9), 2030 (2020). https://doi.org/10.1364/ome.399169

    Article  ADS  Google Scholar 

  11. N. Cuando-Espitia, J. Hernández-Cordero, C. García-Segundo, and R. Quispe-Siccha, Effects of scatterer size and concentration on the spectral features of dye-based random lasers, in Optics InfoBase Conference Papers (2011). https://doi.org/10.1364/iprsn.2011.imd5

  12. P. K. Gupta, Laser physics and technology, in Proceedings of the School on Laser Physics & Technology, Indore, India, pp. 141–149 (2012)

  13. H. Cao, J.Y. Xu, Transition from amplified spontaneous emission to laser action in strongly scattering media. Phys. Rev. E 61(2), 1985–1989 (2000)

    Article  ADS  Google Scholar 

  14. J.R. Lavarello, M.L. Oelze, Assessment of the Effects of Scatterer Size Distributions on Effective Scatterer Diameter Estimates. in IEEE International Ultrasonics Symposium Proceedings, pp. 732–735 (2010)

  15. V. Barna et al., Efficient random laser effect in a new dye-nematic liquid crystalline composite. Rom. Reports Phys. 62(3), 444–454 (2010)

    Google Scholar 

  16. C. J. Dorcéna, Effects of metallic nanoalloys on dye fluorescence. Dorcéna, Cassandre Jenny, PhD thesis (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Hamidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejbarah, R.A., Jassim, J.M., Haddawi, S.F. et al. Transition from incoherent to coherent random lasing by adjusting silver nanowires. Appl. Phys. A 127, 476 (2021). https://doi.org/10.1007/s00339-021-04634-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04634-2

Keywords

Navigation