Skip to main content
Log in

Room-temperature detection of ammonia and formaldehyde gases by LaxBa1−xSnO3−δ (x = 0 and 0.05) screen printed sensors: effect of ceria and ruthenate sensitization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, gas sensing properties of the screen printed ceria and ruthenate-sensitized BaSnO3 (BSO) with La doping heterostructure sensors towards the detection of ammonia and formaldehyde gases at room temperature were studied. Adhered, porous screen printed films with different morphologies were obtained by depositing the LaxBa1−xSnO3−δ (x = 0 and 0.05) powder particles prepared by the polymerized complex method. Ceria and ruthenate sensitization for screen printed LaxBa1−xSnO3−δ (x = 0.05) film was processed through dip-coating in the 0.03 M aqueous solution of CeCl3 and RuCl3, respectively. La-doped BaSnO3 (LBSO) sensor with smaller crystallites, needle-like morphology and high concentration of oxygen vacancies exhibited superior gas response of 65 and 29 towards 50 ppm of ammonia and formaldehyde gases, respectively. Superabundant sensitization of ceria and ruthenate reduced the oxygen vacancy and structural open porosity in the LBSO sensor; therefore, the ammonia gas response was decreased from 65 to 14 and 3, respectively, whereas the formaldehyde gas response was reduced to less than 1/6th times the LBSO sensor. Limit of detection of LBSO sensors was estimated to be ~ 1 and ~ 2 ppm against ammonia and formaldehyde, respectively. The presence of fluorite structured phase ceria with high oxygen atoms storage capacity facilitates the rapid oxidization of analyte gases and caused the expeditious response (75 s) and recovery (60 s) in CeOx-sensitized LBSO sensor. This study might give a new insight into the development of doped and sensitized BSO-based gas sensors operating at ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Zhang, H. Yang, X. Xie, L. Li, L. Zhang, J. Yu, H. Zhao, and B. Liu, Sensors Actuators, B Chem. 141, 381 (2009)

  2. B. Timmer, W. Olthuis, and A. Van Den Berg, Sensors Actuators, B Chem. 107, 666 (2005)

  3. S. Cui, H. Pu, G. Lu, Z. Wen, E.C. Mattson, C. Hirschmugl, M. Gajdardziska-Josifovska, M. Weinert, J. Chen, A.C.S. Appl, Mater. Interfaces 4, 4898 (2012)

    Article  Google Scholar 

  4. W. Liu, Y.Y. Liu, J.S. Do, J. Li, Appl. Surf. Sci. 390, 929 (2016)

    Article  ADS  Google Scholar 

  5. W. Wei, S. Guo, C. Chen, L. Sun, Y. Chen, W. Guo, S. Ruan, J. Alloys Compd. 695, 1122 (2017)

    Article  Google Scholar 

  6. K. Zhou, X. Ji, N. Zhang, and X. Zhang, Sensors Actuators, B Chem. 119, 392 (2006)

  7. K. Kawamura, K. Kerman, M. Fujihara, N. Nagatani, T. Hashiba, and E. Tamiya, Sensors Actuators, B Chem. 105, 495 (2005)

  8. Y. Zhang, B. Jiang, M. Yuan, P. Li, W. Li, X. Zheng, J. Sol-Gel Sci. Technol. 79, 167 (2016)

    Article  Google Scholar 

  9. G. Korotcenkov and B. K. Cho, Sensors Actuators, B Chem. 244, 182 (2017)

  10. N. Barsan, D. Koziej, and U. Weimar, Sensors Actuators, B Chem. 121, 18 (2007)

  11. L. Zhu and W. Zeng, Sensors Actuators, A Phys. 267, 242 (2017)

  12. S.G. Ansari, P. Boroojerdian, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, S.K. Kulkarni, Thin Solid Films 295, 271 (1997)

    Article  ADS  Google Scholar 

  13. G. Korotcenkov, Mater. Sci. Eng. R Rep. 61, 1 (2008)

    Article  Google Scholar 

  14. N. F. Hamedani, A. R. Mahjoub, A. A. Khodadadi, and Y. Mortazavi, Sensors Actuators, B Chem. 156, 737 (2011)

  15. M. Tiemann, Chem. A Eur. J. 13, 8376 (2007)

    Article  ADS  Google Scholar 

  16. C. Zhang, G. Liu, X. Geng, K. Wu, and M. Debliquy, Sensors Actuators, A Phys. 309, 112026 (2020)

  17. D. R. Miller, S. A. Akbar, and P. A. Morris, Sensors Actuators, B Chem. 204, 250 (2014)

  18. I. Kocemba, M. Wróbel-Jedrzejewska, A. Szychowska, J. Rynkowski, and M. Główka, Sensors Actuators, B Chem. 121, 401 (2007)

  19. K.M. Zhu, S.Y. Ma, S.T. Pei, Y. Tie, Q.X. Zhang, W.Q. Wang, X.L. Xu, Mater. Lett. 246, 107 (2019)

    Article  Google Scholar 

  20. Y. Zeng, T. Zhang, H. Fan, W. Fu, G. Lu, Y. Sui, H. Yang, J. Phys. Chem. C 113, 19000 (2009)

    Article  Google Scholar 

  21. Y. Zeng, X. Wang, W. Zheng, J. Nanosci. Nanotechnol. 13, 1286 (2013)

    Article  Google Scholar 

  22. A. Bhattacharya, Y. Jiang, Q. Gao, X. Chu, Y. Dong, S. Liang, A.K. Chakraborty, J. Mater. Res. 34, 2067 (2019)

    Article  ADS  Google Scholar 

  23. Y. Tie, S. Y. Ma, S. T. Pei, Q. X. Zhang, K. M. Zhu, R. Zhang, X. H. Xu, T. Han, and W. W. Liu, Sensors Actuators, B Chem. 308 (2020)

  24. S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, J. Seo, J. H. Noh, and S. Il Seok, Science. 356, 167 (2017)

  25. M.J. Prajapati, R.V. Vardhan, S. Mandal, Ceram. Int. 45, 17420 (2019)

    Article  Google Scholar 

  26. X. Chu, Z. Gan, L. Bai, Y. Dong, and M. N. Rumyantseva, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 259, 114606 (2020)

  27. B. Ostrick, M. Fleischer, U. Lampe, and H. Meixner, Sensors Actuators, B Chem. 44, 601 (1997)

  28. U. Lampe, J. Gerblinger, and H. Meixner, Sensors Actuators, B Chem. 26, 97 (1995)

  29. X. Chu, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 106, 305 (2004).

  30. A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J.W. Ager, C.S. Lo, B. Jalan, Nat. Commun. 8, 1 (2017)

    Article  Google Scholar 

  31. W.Y. Wang, Y.L. Tang, Y.L. Zhu, J. Suriyaprakash, Y.B. Xu, Y. Liu, B. Gao, S.W. Cheong, X.L. Ma, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  32. C. Shan, T. Huang, J. Zhang, M. Han, Y. Li, Z. Hu, J. Chu, J. Phys. Chem. C 118, 6994 (2014)

    Article  Google Scholar 

  33. J. Cerdà, J. Arbiol, G. Dezanneau, R. Díaz, and J. R. Morante, Sensors Actuators, B Chem. 84, 21 (2002)

  34. G. Korotcenkov, Sensors Actuators, B Chem. 107, 209 (2005)

  35. S.J. Kim, J.H. We, J.S. Kim, G.S. Kim, B.J. Cho, J. Alloys Compd. 582, 177 (2014)

    Article  Google Scholar 

  36. G. Manjunath, P. Nagaraju, S. Mandal, J. Mater. Sci. Mater. Electron. 31, 10366 (2020)

    Article  Google Scholar 

  37. N. Guermat, W. Daranfed, I. Bouchama, and N. Bouarissa, J. Mol. Struct. 1225, 129134 (2021)

  38. A. Dey, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 229, 206 (2018)

  39. N. Purushothamreddy, M. Kovendhan, K. Reshma, Dileep, G. Veerappan, K. Saravana Kumar, and D. Paul Joseph, Mater. Chem. Phys. 250, 123137 (2020)

  40. P. Songwattanasin, A. Karaphun, S. Phokha, S. Hunpratub, S. Maensiri, V. Amornkitbamrung, E. Swatsitang, Phys. B Condens. Matter 571, 213 (2019)

    Article  ADS  Google Scholar 

  41. L. Xi, L. Xiaoxun, X. Baokun, Z. Muyu, J. Alloys Compd. 186, 315 (1992)

    Article  Google Scholar 

  42. K. Yang, J. Ma, X. Qiao, Y. Cui, L. Jia, and H. Wang, Sensors Actuators, B Chem. 313, 128022 (2020)

  43. J.B. Lhoest, P. Bertrand, L.T. Weng, J.L. Dewez, Macromolecules 28, 4631 (1995)

    Article  ADS  Google Scholar 

  44. B.C. Luo, J. Zhang, J. Wang, P.X. Ran, Ceram. Int. 41, 2668 (2015)

    Article  Google Scholar 

  45. N.F. Hamedani, A.R. Mahjoub, and Y. Mortazavi, Sensors Actuators, B Chem. 169, 67 (2012)

  46. K. Kamata, K. Sugahara, Y. Kato, S. Muratsugu, Y. Kumagai, F. Oba, and M. Hara, ACS Appl. Mater. Interfaces. 10, 23792 (2018)

  47. M. Patel, A. Chavda, I. Mukhopadhyay, J. Kim, A. Ray, Nanoscale 8, 2293 (2016)

    Article  ADS  Google Scholar 

  48. P.D. Antunez, D.A. Torelli, F. Yang, F.A. Rabuffetti, N.S. Lewis, R.L. Brutchey, Chem. Mater. 26, 5444 (2014)

    Article  Google Scholar 

  49. N. Zidi, S. Omeiri, B. Hadjarab, A. Bouguelia, A. Akroun, M. Trari, Phys. B Condens. Matter. 405, 3355 (2010)

    Article  ADS  Google Scholar 

  50. A.S. Deepa, S. Vidya, P.C. Manu, S. Solomon, A. John, J.K. Thomas, J. Alloys Compd. 509, 1830 (2011)

    Article  Google Scholar 

  51. A. Slassi, Mater. Sci. Semicond. Process. 32, 100 (2015)

    Article  Google Scholar 

  52. K.K. James, P.S. Krishnaprasad, K. Hasna, M.K. Jayaraj, J. Phys. Chem. Solids. 76, 64 (2015)

    Article  ADS  Google Scholar 

  53. A. Tiwari, M.S. Wong, Thin Solid Films 703, 137986 (2020)

    Article  ADS  Google Scholar 

  54. C. Huang, X. Wang, X. Wang, X. Liua, Q. Shia, X. Pana, X. Li, RSC Adv. 6, 25379 (2016)

    Article  ADS  Google Scholar 

  55. R. Sankar ganesh, M. Navaneethan, G. K. Mani, S. Ponnusamy, K. Tsuchiya, C. Muthamizhchelvan, S. Kawasaki, and Y. Hayakawa, J. Alloys Compd. 698, 555 (2017)

  56. M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, and L. A. Patil, Sensors Actuators, B Chem. 115, 128 (2006)

  57. H. Shan, C. Liu, L. Liu, S. Li, L. Wang, X. Zhang, X. Bo, X. Chi Sensors Actuators, B Chem. 184, 243 (2013)

  58. Q. Zhao, D. Ju, X. Deng, J. Huang, B. Cao, X. Xu, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  59. Q. Zeng, Y. Cui, L. Zhu, Y. Yao, Mater. Sci. Semicond. Process. 111, 104962 (2020)

    Article  Google Scholar 

  60. L. Zhang, J. Hu, P. Song, H. Qin, X. Liu, M. Jiang, Phys. B Condens. Matter 370, 259 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Financial support from Science and Engineering Research Board (SERB), Department of Science and Technology, India (ECR/2015/000339), is gratefully acknowledged. One of the authors P. Nagaraju would like to thank DST-SERB for financial support to carry out the present work (ECR/2016/000534). The authors thank Mr. Sachin for his valuable assistance in capturing the FESEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saumen Mandal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 2089 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunath, G., Vardhan, R.V., Praveen, L.L. et al. Room-temperature detection of ammonia and formaldehyde gases by LaxBa1−xSnO3−δ (x = 0 and 0.05) screen printed sensors: effect of ceria and ruthenate sensitization. Appl. Phys. A 127, 116 (2021). https://doi.org/10.1007/s00339-021-04284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04284-4

Keywords

Navigation