Skip to main content
Log in

Tunable broadband angular selectivity for s-polarized terahertz incidences

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

While achieving broadband angular selectivity for p-polarized wave has been well studied, it is still challenging for s-polarized wave. The reason is that at high frequencies such as terahertz spectrum, the permeability of materials has always approached unity. Here, we propose a solution to implement broadband angular selectivity for s-polarized incidences by combining an effective anisotropic diamagnetic medium and a staggered photonic structure. The diamagnetic medium is constructed with periodically arranged metallic rings, exhibiting negligible frequency dispersion in an ultra-wide terahertz band. By incorporating temperature-dependent dielectric into staggered structure, a thermally tunable broadband angular selectivity system is presented, with an adjustable selective angle ranging from 0° to 40°. Full-wave simulations verify the effectiveness of the proposed approach, breaking through the polarization limitation of the existing angular selectivity technology. The proposed approach is simple, robust, and scalable from microwave to terahertz frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.A. Omar, Z. Shen, IEEE Trans. Antennas Propag. 67, 282–290 (2019)

    Article  ADS  Google Scholar 

  2. Y. Fink, J. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, E. Thomas, Science 282, 1679–1682 (1998)

    Article  ADS  Google Scholar 

  3. S. Sriram, K. Steinbruegge, E. Supertzi, U. S Patent 4, 512–638 (1985)

    Google Scholar 

  4. Y. Shen, C.W. Hsu, Y. Yeng, J. Joannopoulos, M. Soljačić, Appl. Phys. Rev. 3, 011103 (2016)

    Article  Google Scholar 

  5. G.M. Clarke, P.D. Graham, B.R. Hansen, T.B. Hoium, D.F. Slama, U. S. Patent 7(467), 8732 (2008)

    Google Scholar 

  6. S.W. MacMaster, U. S. Patent 7(052), 746 (2006)

    Google Scholar 

  7. O. Höhn, I.M. Peters, C. Ulbrich, A. Hoffmann, U. Schwarz, B. Bläsi, Proc. SPIE 8438, 84380A (2012)

    Article  ADS  Google Scholar 

  8. E.D. Kosten, J.H. Atwater, J. Parsons, A. Polman, H.A. Atwater, Light: Sci. Appl. 2, e45–e45 (2013)

    Google Scholar 

  9. E.D. Kosten, B. Kayes, H. Atwater, Energy Environ. Sci. 7, 1907 (2014)

    Article  Google Scholar 

  10. S. Steiner, S. Kroker, T. Käsebier, E.-B. Kley, A. Tünnermann, Opt. Express 20, 22555–22562 (2012)

    Article  ADS  Google Scholar 

  11. L.V. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. Barnakov, M. Noginov, Appl. Phys. Lett. 97, 131107 (2010)

    Article  ADS  Google Scholar 

  12. H. Iizuka, N. Engheta, S. Sugiura, Opt. Lett. 41, 3829 (2016)

    Article  ADS  Google Scholar 

  13. Q. Qinyu, C. Xu, C. Wang, Sci. Rep. 7, 16574 (2017)

    Article  ADS  Google Scholar 

  14. B.K. Winker, D.B. Taber, U. S. Patent. 6(239), 853 (2001)

    Google Scholar 

  15. A. Alù, G. D’Aguanno, N. Mattiucci, M. Bloemer, Phys. Rev. Lett. 106, 123902 (2011)

    Article  ADS  Google Scholar 

  16. R. Hamam, I. Celanovic, M. Soljačić, Phys. Rev. A 83, 035806–035806 (2011)

    Article  ADS  Google Scholar 

  17. Y. Shen, D. Ye, I. Celanovic, S. Johnson, J. Joannopoulos, M. Soljačić, Science 343, 1499–1501 (2014)

    Article  ADS  Google Scholar 

  18. Y. Shen, D. Ye, Z. Wang, L. Wang, I. Celanovic, L. Ran, J. Joannopoulos, M. Soljačić, Phys. Rev. B 90, 125422 (2014)

    Article  ADS  Google Scholar 

  19. J. Guo, S. Chen, S. Jiang, J. Mod. Opt. 65, 1–9 (2017)

    Google Scholar 

  20. J. Guo, S. Chen, and S. Jiang, in Asia Communications and Photonics Conference, OSA Technical Digest (online) (Optical Society of America, 2017), paper Su2A.137

  21. Y. Qu, Y. Shen, K. Yin, Y. Yang, Q. Li, M. Qiu, M. Soljačić, ACS Photonics 5, 4125–4131 (2018)

    Article  Google Scholar 

  22. R. Paniagua-Domínguez, Y.F. Yu, A.E. Miroshnichenko, L.A. Krivitsky, Y.H. Fu, V. Valuckas, L. Gonzaga, Y.T. Toh, A.Y.S. Kay, B. Luk’yanchuk, A.I. Kuznetsov, Nat. Commun. 7, 10362 (2016)

    Article  ADS  Google Scholar 

  23. D. Arslan, K.E. Chong, A.E. Miroshnichenko, D.Y. Choi, D.N. Neshev, T. Pertsch, Y.S. Kivshar, I. Staude, J. Phys. D-Appl. Phys. 50, 434002 (2017)

    Article  Google Scholar 

  24. L. Ding, T. Qiu, J. Zhang, X. Wen, J. Opt. 21, 125602 (2019)

    Article  ADS  Google Scholar 

  25. K.V. Sreekanth, M. ElKabbash, R. Medwal, J. Zhang, T. Letsou, G. Strangi, M. Hinczewski, R.S. Rawat, C. Guo, R. Singh, ACS Photonics 6, 1610–1617 (2019)

    Article  Google Scholar 

  26. C. Wang, Z. Zhu, W. Cui, Y. Yang, L. Ran, D. Ye, Appl. Phys. Lett. 114, 191902 (2019)

    Article  ADS  Google Scholar 

  27. W. Shu, Z. Ren, H. Luo, F. Li, Appl. Phys. A 87, 297 (2007)

    Article  ADS  Google Scholar 

  28. X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, J. Zi, Appl. Phys. Lett. 80, 4291–4293 (2002)

    Article  ADS  Google Scholar 

  29. H. Chen, L. Huang, X. Cheng, H. Wang, Prog. Electromag. Res. 115, 317–326 (2011)

    Article  Google Scholar 

  30. T. Lv, Y. Li, H.F. Ma, Z. Zhu, Z. Li, C. Guan, J. Shi, H. Zhang, T. Cui, Sci. Rep. 6, 23186 (2016)

    Article  ADS  Google Scholar 

  31. T. Chang, X. Zhang, X. Zhang, H.-L. Cui, Appl. Optic. 56, 3287–3292 (2017)

    Article  ADS  Google Scholar 

  32. C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, T. Pertsch, Phys. Rev. B 77, 195328–195321 (2008)

    Article  ADS  Google Scholar 

  33. P. Kužel, F. Kadlec, C. R. Phys. 9, 197–214 (2008)

    Article  ADS  Google Scholar 

  34. J. Servoin, Y. Luspin, Phys. Rev. B 22, 5501–5506 (1980)

    Article  ADS  Google Scholar 

  35. K. Shiraishi, K. Muraki, Opt. Exp. 23, 16676–16681 (2015)

    Article  ADS  Google Scholar 

  36. Y. Zhao, B. Li, C. Lan, K. Bi, Z. Qu, Opt. Exp. 25, 22158–22163 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work is supported by the NSFC under grants 61771422, 62071420, 61771421, 61675013, the ZJNSF under grant LR18F010001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexin Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Zhu, Z., Zhang, B. et al. Tunable broadband angular selectivity for s-polarized terahertz incidences. Appl. Phys. A 127, 127 (2021). https://doi.org/10.1007/s00339-021-04279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04279-1

Keywords

Navigation