Skip to main content
Log in

High-temperature oxidation resistance of a Ti–Al–Sn–Zr titanium matrix composites reinforced with in situ TiC and Ti5Si3 fabricated by powder metallurgy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A mixture of the Ti–Al–Sn–Zr matrix powder and SiC particles was used as a raw powder to fabricate an in situ TiC and Ti5Si3 reinforced titanium matrix composites (TMCs) via low energy ball milling–cold press forming–argon-protected sintering. The effects of various content of SiCp on the microstructure, phase composition and high-temperature oxidation behavior of the composites at 750 °C and 850 °C were studied. XRD results show that the oxidation phases were mainly composed of TiO2, Al2O3, SiO2 and α-Ti. According to the SEM images, the cross-sectional morphology of oxidation at 750 °C for 100 h shows that the oxide layer (20.00 μm) in the TMCs with 10.0 vol% SiCp after oxidation was denser and thinner and was 82.13% thinner than that of the matrix (98.00 μm). The parabolic rate constant (kp) of the oxidized composites decreases with the increase of SiCp content at 750 °C and 850 °C. In particular, the composites with 10 vol% SiCp content have smaller kp. All the results show that the addition of SiCp in TMCs can improve high-temperature oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.N. Mu, H.N. Cai, H.M. Zhang et al., Uniform dispersion of multi-layer graphene reinforced pure titanium matrix composites via flake powder metallurgy. Mater. Sci. Eng. A 725, 541–548 (2018)

    Article  Google Scholar 

  2. S. Li, B. Sun, H. Imai et al., Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos. A Appl. Sci. Manuf. 48, 57–66 (2013)

    Article  Google Scholar 

  3. T. Kuzumaki, O. Ujiie, H. Ichinose et al., Mechanical characteristics and preparation of carbon nanotube fiber-reinforced Ti composite. Adv. Eng. Mater. 2(7), 416–418 (2000)

    Article  Google Scholar 

  4. S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R Rep. 29(3–4), 49–113 (2000)

    Article  Google Scholar 

  5. S.C. Tjong, Y.W. Mai, Processing–structure–property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos. Sci. Technol. 68(3–4), 583–601 (2008)

    Article  Google Scholar 

  6. T. Yamamoto, A. Otsuki, K. Ishihara et al., Synthesis of near net shape high density TiB/Ti composite. Mater. Sci. Eng. A 239–240, 647–651 (1997)

    Article  Google Scholar 

  7. L. Lu, M.O. Lai, H.Y. Wang, Synthesis of titanium diboride TiB2 and Ti–Al–B metal matrix composites. J. Mater. Sci. 35(1), 241–248 (2000)

    Article  ADS  Google Scholar 

  8. C.J. Zhang, F.T. Kong, S.L. Xiao et al., Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB + TiC) reinforcements. Mater. Sci. Eng. A 548, 152–160 (2012)

    Article  Google Scholar 

  9. S. Gorsse, D.B. Miracle, Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater. 51(9), 2427–2442 (2003)

    Article  Google Scholar 

  10. G. Rousset, E. Martin, J. Lamon, In situ fibre strength determination in metal matrix composites. Compos. Sci. Technol. 69(15–16), 2580–2586 (2009)

    Article  Google Scholar 

  11. L.J. Huang, L. Geng, Y. Fu et al., Oxidation behavior of in situ TiCp/Ti6Al4V composite with self-assembled network microstructure fabricated by reaction hot pressing. Corros. Sci. 69, 175–180 (2013)

    Article  Google Scholar 

  12. N. Dalili, A. Edrisy, K. Farokhzadeh et al., Improving the wear resistance of Ti–6Al–4V/TiC composites through thermal oxidation (TO). Wear 269(7), 590–601 (2010)

    Article  Google Scholar 

  13. D. Qin, Y. Lu, Q. Liu et al., Effects of Si addition on mechanical properties of Ti–5Al–5V–5Mo–3Cr alloy. Mater. Sci. Eng. A 561, 460–467 (2013)

    Article  Google Scholar 

  14. L.J. Huang, S. Wang, L. Geng et al., Low volume fraction in situ (Ti5Si3 + Ti2C)/Ti hybrid composites with network microstructure fabricated by reaction hot pressing of Ti–SiC system. Compos. Sci. Technol. 82, 23–28 (2013)

    Article  Google Scholar 

  15. Y. Jiao, L.J. Huang, S.L. Wei et al., Nano-Ti5Si3 leading to enhancement of oxidation resistance. Corros. Sci. 141, 223–230 (2018)

    Article  Google Scholar 

  16. X.J. Xu, C. Li, M.T. Vitus, S.F. Wang et al., Microstructure and Properties of Ti–Al–Sn–Zr matrix composite reinforced with in situ TiC and Ti5Si3 prepared by powder metallurgy. Mater. Res. Express 6, 1065b3 (2019)

    Article  Google Scholar 

  17. S.A. Kekare, J.B. Toney, P.B. Aswath, Oxidation of ductile particle reinforced Ti–48Al composite. Metall. Mater. Trans. A 26(7), 1835–1845 (1995)

    Article  Google Scholar 

  18. S. Gorsse, Y.L. Petitcorps, S. Matar et al., Investigation of the Young’s modulus of TiB needles in situ produced in titanium matrix composite. Mater. Sci. Eng. A 340(1–2), 80–87 (2003)

    Article  Google Scholar 

  19. S. Gong, H. Xu, Q. Yu et al., Oxidation behavior of TiAl/TiAl–SiC gradient coatings on gamma titanium aluminides. Surf. Coat. Technol. 130(1), 128–132 (2000)

    Article  Google Scholar 

  20. L. Liu, J. Xu, P. Munroe et al., Microstructure, mechanical and electrochemical properties of in situ synthesized TiC reinforced Ti5Si3 nanocomposite coatings on Ti–6Al–4V substrates. Electrochim. Acta 115, 86–95 (2014)

    Article  Google Scholar 

  21. Y. Jiao, L.J. Huang et al., Nano-scaled Ti5Si3 evolution and strength enhancement of titanium matrix composites with two-scale architecture via heat treatment. Mater. Sci. Eng. A 701, 359–369 (2017)

    Article  Google Scholar 

  22. Y.J. Kim, H. Chung, S.J.L. Kang, Processing and mechanical properties of Ti–6Al–4V/TiC in situ composite fabricated by gas–solid reaction. Mater. Sci. Eng. A 333(1–2), 343–350 (2002)

    Article  Google Scholar 

  23. O.I. Peter, A.P.I. Popoola, E. Ajenifuja et al., Effects of temperature on the microstructure and physico-mechanical properties of TiNiAl–SiC composite by spark plasma sintering technique. Mater. Res. Express 6, 085802 (2019)

    Article  ADS  Google Scholar 

  24. D. Monceau, B. Pieraggi, Determination of parabolic rate constants from a local analysis of mass-gain curves. Oxid. Met. 50(5–6), 477–493 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Projects of the 13th Five-Year Plan Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China (No: 6140922010201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Liu, Y., Tabie, V. et al. High-temperature oxidation resistance of a Ti–Al–Sn–Zr titanium matrix composites reinforced with in situ TiC and Ti5Si3 fabricated by powder metallurgy. Appl. Phys. A 126, 254 (2020). https://doi.org/10.1007/s00339-020-3431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3431-x

Keywords

Navigation