Skip to main content

Advertisement

Log in

Silver sulphide nano-particles enhanced photo-current in polymer solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silver sulphide nano-particles (NPs) have been employed as light trapping mechanism in the solar absorber layer of thin film inverted organic solar cell. The synthesized nano-particle has been characterized using high-resolution scanning and transmission electron microscopy (HRSEM and HRTEM), X-Ray diffraction (XRD). The effects of \(\hbox {Ag}_{2}\hbox {S}\) NPs in the newly fabricated inverted polymer solar cell with architecture ITO/ZnO/P3HT:\(\hbox {PC}_{61}\hbox {BM}\)-\(\hbox {Ag}_{2}\hbox {S}\) /\(\hbox {MoO}_3/\hbox {AL}\) were characterized using optical and electrical properties of the solar absorber film. The optimized NPs in the photoactive layers are designed to improve photons harvesting, charge transport and reduced charge recombination, which resulted in the collection of high short circuit current density, as large as \(16.50\hbox { mAcm}^{-2}\). The measured high photocurrent and better device rectification has lead to improved power conversion efficiencies (PCEs) and device stability. The best power conversion efficiency recorded in this investigations was 5.15 % at the concentration of 1 % \(\hbox {Ag}_{2}\hbox {S}\) by weight. Furthermore, the solar cells exhibited extraordinary environmental stability stored in ambient environment which is attributed to the inverted device architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Jin, C. Tao, M. Velusamy, M. Aljada, Y. Zhang, M. Hambsch, P.L. Burn, P. Meredith, Efficient, large area iTO-and-PEDOT-free organic solar cell sub-modules. Adv. Mater. 24, 2572–2577 (2012)

    Google Scholar 

  2. G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 80–84 (2005)

    Google Scholar 

  3. S. Zhang, Y. Qin, J. Zhu, J. Hou, Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 30, 1800868 (2018)

    Google Scholar 

  4. P.C. Yang, J.Y. Sun, S.Y. Ma, Y.M. Shen, Y.H. Lin, C.P. Chen, C.F. Lin, Interface modification of a highly air-stable polymer solar cell. Sol. Energy Mater. Sol. Cells 98, 351–356 (2012)

    Google Scholar 

  5. S. Gunes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)

    Google Scholar 

  6. C. Huang, X. Liao, K. Gao, L. Zuo, F. Lin, X. Shi, C.-Z. Li, H. Liu, X. Li, F. Liu, Y. Chen, H. Chen, A.K.-Y. Jen, Highly efficient organic solar cells based on S, N-heteroacene non-fullerene acceptors. Chem. Mater. 30, 5429–5434 (2018)

    Google Scholar 

  7. Y. Cui, H. Yao, J. Zhang, T. Zhang, Y. Wang, L. Hong, K. Xian, B. Xu, S. Zhang, J. Peng, Z. Wei, F. Gao, J. Hou, Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 10, 2515 (2019)

    ADS  Google Scholar 

  8. Z. Liang, Q. Zhang, L. Jiang, G. Cao, ZnO cathode buffer layers for inverted polymer solar cells. Energy Environ. Sci. 8, 3442–3476 (2015)

    Google Scholar 

  9. Z. Zheng, Q. Hu, S.Q. Zhang, D.Y. Zhang, J.Q. wang, S.K. Xie, R. Wang, Y.P. Qin, W.N. Li, L. Hong, N.N. Liang, F. Liu, Y. Zhang, Z.X. Wei, Z.Y. Tang, T.P. Russell, J.H. Hou, H.Q. Zhou, A highly efficient non-fullerene organic solar cell with a fill factor over 0.80 enabled by a fine-tuned hole-transporting layer, Adv. Mater. 30, 1801801 (2018)

    Google Scholar 

  10. S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, J. Hou, Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 28, 9423–9429 (2016)

    Google Scholar 

  11. L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, Y. Chen, Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 14, 1094–1098 (2018)

    ADS  Google Scholar 

  12. A.D. Rao, S. Karalatti, T. Thomas, P.C. Ramamurth, Self-assembled, aligned ZnO nanorod buffer layers for high-current-density inverted organicphotovoltaics. ACS Appl. Mater. Interfaces 6, 16792–16799 (2014)

    Google Scholar 

  13. D.E. Motaung, G.F. Malgas, C.J. Arendse, S.E. Mavundla, C.J. Oliphant, D. Knoesen, Thermal-induced changes on the properties of spin-coated P3HT: C60 thin films for solar cell applications. Sol. Energy Mater. Sol. Cells 93, 1674–1680 (2009)

    Google Scholar 

  14. Godfrey Keru, Patrick G. Ndungu, Genene T. Mola, Vincent O. Nyamori, Bulk heterojunction solar cell with nitrogen-doped carbon nanotubes in the active layer: effect of nanocomposite synthesis technique on photovoltaic properties. Materials 8, 2415–2432 (2015)

    ADS  Google Scholar 

  15. S. Zhang, L. Ye, J. Hou, Breaking the 10% efficiency barrier in organic photovoltaics: morphology and device optimization of well-known PBDTTT polymers. Adv. Energy Mater. 6, 1502529 (2016)

    Google Scholar 

  16. E. Vitoratos, S. Sakkopoulos, E. Dalas, N. Paliatsas, D. Karageorgopoulos, F. Petraki, S. Kennouc, S.A. Choulis, Thermal degradation mechanisms of PEDOT:PSS. Org. Electron. 10, 61–66 (2009)

    Google Scholar 

  17. M. Girtan, M. Rusu, Role of ITO and PEDOT:PSS in stability/degradation of polymer:fullerene bulk heterojunctions solar cells. Sol. Energy Mater. Sol. Cells 94, 446–450 (2010)

    Google Scholar 

  18. H.-L. Yip, A.K.-Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ. Sci. 5, 5994–6011 (2012)

    Google Scholar 

  19. M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006)

    ADS  Google Scholar 

  20. F.J. Zhang, X.W. Xu, W.H. Tang, J. Zhang, Z.L. Zhuo, J. Wang, J. Wang, Z. Xu, Y.S. Wang, Recent development of the inverted configuration organic solar cells. Sol. Energy Mater. Sol. Cells 95, 1785–1799 (2011)

    Google Scholar 

  21. J. Owen, M.S. Son, H. Yoo, B.D. Ahn, S.Y. Lee, Organic photovoltaic devices with Ga-doped ZnO electrode. Appl. Phys. Lett. 90, 033512 (2007)

    ADS  Google Scholar 

  22. G. Li, Y. Yao, C.-W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88, 073508 (2006)

    ADS  Google Scholar 

  23. T.B. Yang, W.Z. Cai, D.H. Qin, E.G. Wang, L.F. Lan, X. Gong, J.B. Peng, Y. Cao, Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J. Phys. Chem. C 114, 6849–6853 (2010)

    Google Scholar 

  24. Y.M. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Inverted polymer solar cells integrated with a low-temperature-annealed sol–gel-derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679–1683 (2011)

    Google Scholar 

  25. A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, An inverted organic solar cell employing a sol–gel derived ZnO electron selective layer and thermal evaporated \(\text{ MoO }_{3}\) hole selective layer. Appl. Phys. Lett. 93, 221107 (2008)

    ADS  Google Scholar 

  26. K. Liu, Y. Bi, S. Qu, F. Tan, D. Chi, S. Lu, Y. Li, Y. Kou, Z. Wang, Efficient hybrid plasmonic polymer solar cells with Ag nanoparticle decorated TiO 2 nanorods embedded in the active layer. Nanoscale 6, 6180–6186 (2014)

    ADS  Google Scholar 

  27. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    ADS  Google Scholar 

  28. W.E.I. Sha, W.C.H. Choy, Y.P. Chen, W.C. Chew, Optical design of organic solar cell with hybrid plasmonic system. Opt. Express 19, 15908–15918 (2011)

    ADS  Google Scholar 

  29. M.S.G. Hamed, G.T. Mola, Copper sulphide as a mechanism to improve energy harvesting in thin film solar cells. J. Alloy. Compd. 802, 252–258 (2019)

    Google Scholar 

  30. Tabitha A. Amollo, Genene T. Mola, Vincent O. Nyamori, Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties, Nanotechnology 28(49), 495703 (2017)

    Google Scholar 

  31. Myung-Gyu Kang, Xu Ting, Hui Joon Park, Xiangang Luo, L. Jay Guo, Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes. Adv. Mater. 22, 43784383 (2010)

    Google Scholar 

  32. Qin Feng, Pu Mingbo, Hu Chenggang, Xiangang Luo, Engineering the dispersion of metamaterial surface for broadband infrared absorption. Opt. Lett. 37(11), 2133–2135 (2012)

    ADS  Google Scholar 

  33. V. Krylova, A. Milbrat, A. Embrechts, J. Baltrusaitis, \(\text{ Ag }_{2}\text{ S }\) deposited on oxidized polypropylene as composite material for solar light absorption. Appl. Surf. Sci. 301, 134–141 (2014)

    ADS  Google Scholar 

  34. Z.-D. Meng, T. Ghosh, L. Zhu, J.-G. Choi, C.-Y. Park, W.-C. Oh, Synthesis of fullerene modified with \(\text{ Ag }_{2}\text{ S }\) with high photocatalytic activity under visible light. J. Mater. Chem. 22, 16127–16135 (2012)

    Google Scholar 

  35. C. Chen, Y. Xie, G. Ali, S.H. Yoo, S.O. Cho, Improved conversion efficiency of \(\text{ Ag }_{2}\text{ S }\) quantum dot-sensitized solar cells based on TiO2 nanotubes with a ZnO recombination barrier layer. Nanoscale Res. Lett. 6, 462 (2011)

    ADS  Google Scholar 

  36. Emmanuel Stratakis, Emmanuel Kymakis, Nanoparticle-based plasmonic organic photovoltaic devices. Mater. Today 16(4), 134–146 (2013)

    Google Scholar 

  37. K. Kaviyarasu, Genene T. Mola, S.O. Oseni, K. Kanimozhi, C. Maria Magdalane, J. Kennedy, M. Maaza, ZnO doped single wall carbon nanotube as an active medium for gas sensor and solar absorber. J. Mater. Sci.: Mater. Electron. 30, 147158 (2019)

    Google Scholar 

  38. Tabitha A. Amolloa, Genene T. Mola, Vincent O. Nyamori, High-performance organic solar cells utilizing graphene oxide in the active and hole transport layers. Sol. Energy 171, 8391 (2018)

    Google Scholar 

  39. N. Mukherjee, S. Jana, G.G. Khan, A. Monda, Photo-induced exciton generation in polyvinylpyrrolidone encapsulated Ag2S core-shells, electrochemical deposition, regular shape and high order of particle size distribution, J. Appl. Phys. 112, 124324 (2012)

    ADS  Google Scholar 

  40. L. Dong, Y. Chu, Y. Liu, L. Li, Synthesis of faceted and cubic \(\text{ Ag }_{2}\text{ S }\) nanocrystals in aqueous solutions. J. Colloid Interface Sci. 317, 485–492 (2008)

    ADS  Google Scholar 

  41. L.V. Azaroff, Elements of X-ray crystallography (McGraw-Hill, New York, 1968)

    Google Scholar 

  42. D.D. Evanoff Jr., G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6, 1221–1231 (2005)

    Google Scholar 

  43. A. Panneerselvam, M.A. Malik, P. OBrien, J. Raftery, The CVD of silver sulfide and silver thin films from a homoleptic crystalline single-source precursor. J. Mater. Chem. 18, 3264–3269 (2008)

    Google Scholar 

  44. T.-Y. Chu, O.-K. Song, Hole mobility of N, N-bis(naphthalen-1-yl)-N, N-bis(phenyl) benzidine investigated by using space-charge-limited currents. Appl. Phys. Lett. 90, 203512-1–203512-3 (2007)

    ADS  Google Scholar 

  45. G.G. Malliaras, J.R. Salem, P.J. Brock, C. Scott, Electrical characteristics and efficiency of single-layer organic light-emitting diodes, Phys. Rev. B. 58, 1829 (1998)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation (NRF) (Grant numbers 93562, 92786 and 85589), South Africa. The authors also appreciate the members of staff of Microscopy and Microanalysis Unit(MMU) at UKZN, for several SEM and TEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genene Tessema Mola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, M.S.G., Adedeji, M.A., Zhang, Y. et al. Silver sulphide nano-particles enhanced photo-current in polymer solar cells. Appl. Phys. A 126, 207 (2020). https://doi.org/10.1007/s00339-020-3389-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3389-8

Keywords

Navigation