Skip to main content
Log in

Influence of calcination temperature on the electrochemical performance of Sol–gel-derived ZnO/C nanocomposite electrodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, ZnO/C nanocomposites have been synthesized through the sol–gel technique using sucrose as a capping agent and carbon source. The as-prepared ZnO/C samples have been calcined at 300. 400 and 500 °C. The effect of calcination temperature on the structural, morphological and electrochemical properties has been assessed through XRD, FTIR, SEM, EDAX, CV, GCD and EIS studies. The XRD analysis indicates the formation of crystalline ZnO with hexagonal structure. The surface morphology of the sample calcined at 400 °C reveals a uniform. Partially attached, spherical particles structure due to the presence of carbon. The EDAX spectrum conclusively proves the presence of carbon in the samples. It has been found that the best possible electrochemical characteristics have been realized at a calcination temperature of 400 °C. At this stage, a maximum specific capacitance of 820 F g−1 at a specific current of 1 A g−1 and a low charge transfer resistance of 1.8 Ω, with good cyclic stability and reversibility, have been achieved. The study demonstrates that the calcination temperature has a strong bearing on the electrochemical characteristics of ZnO/C nanocomposite electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Yan, T. Wang, X. Li, H. Pang, H. Xue, Noble metal-based materials in high – performance supercapacitors. J. Inorg. Chem. Front. 4, 33 (2017). https://doi.org/10.1039/C6QI00199H

    Article  Google Scholar 

  2. M. Yen Ho, P. Sim Khiew, D. Isa, Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors. J. Funct. Mater. Lett. 7, 1440012 (2014). https://doi.org/10.1142/s1793604714400128

    Article  Google Scholar 

  3. Z. Pu, Q. Liu, A.H. Qusti, A.M. Asiri, A.R.O. Al-Youbi, X. Sun, Fabrication of Ni(OH)2 coated ZnO array for high-rate pseudocapacitive energy storage. J. Electrochim. Acta. 109, 252 (2013). https://doi.org/10.1016/j.electacta.2013.07.161

    Article  Google Scholar 

  4. D. Kalpana, K.S. Omkumar, S.S. Kumar, N.G. Renganathan, A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochim. Acta 52, 1309 (2006). https://doi.org/10.1016/j.electacta.2006.07.032

    Article  Google Scholar 

  5. M. Saranya, R. Ramachandran, F. Wang, Graphene-zinc oxide (G-ZnO) nanocomposite for electrochemical supercapacitor applications. J. Sci. Adv. Mater. Devices. 1, 454 (2016). https://doi.org/10.1016/j.jsamd.2016.10.001

    Article  Google Scholar 

  6. M. Selvakumar, D.K. Bhat, A.M. Aggarwal, S.P. Iyer, G. Sravani, Nano ZnO-activated carbon composite electrodes for supercapacitors. J. Physica B. 405, 2286 (2010). https://doi.org/10.1016/j.physb.2010.02.028

    Article  ADS  Google Scholar 

  7. Y.M. Li, X. Liu, Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor. J. Mater. Chem. Phys. 148, 380 (2014). https://doi.org/10.1016/j.matchemphys.2014.07.058

    Article  ADS  Google Scholar 

  8. Y. Zhang, X. Sun, L. Pan, H. Li, Z. Sun, C. Sun, B.K. Tay, Carbon nanotube–ZnO nanocomposite electrodes for supercapacitors. J. Solid State Ionics. 180, 1525 (2009). https://doi.org/10.1016/j.ssi.2009.10.00

    Article  Google Scholar 

  9. W. Xuejing, Y. Shuwen, L. Xiaobo, Chin Novel Single-Source Precursors Approach to Prepare Highly Uniform Bi2S3 and Sb2S3 Nanorods via a Solvothermal Treatment. J. Chem. 27, 1317 (2009). https://doi.org/10.1021/cm062549o

    Article  Google Scholar 

  10. Lu Yingshuang, Leonard C. Thomas, John P. Jerrell, Keith R. Cadwallader, Shelly J. Schmidt, Investigating the thermal decomposition differences between beet and cane sucrose sources. J. Food Meas. 11, 1640 (2017). https://doi.org/10.1007/s11694-017-9544-z

    Article  Google Scholar 

  11. Anil Vithal Ghule, Bertrand Lo, Shin-Hwa Tzing, Kalyani Ghule, Hua Chang, Yong Chien Ling, Simultaneous Thermogravimetric analysis and in situ thermo-Raman spectroscopic investigation of thermal decomposition of zinc acetate dihydrate forming zinc oxide nanoparticles. J. Chem. Phys. Lett. 381, 262 (2003). https://doi.org/10.1016/j.cplett.2003.09.125

    Article  ADS  Google Scholar 

  12. N. Maheswari, G. Muralidhara, Hexagonal CeO2 nanostructures: an efficient electrode material for supercapacitors. Dalton Transaction. 45(36), 14352 (2016). https://doi.org/10.1039/c6dt03032g

    Article  Google Scholar 

  13. R.K. Sendi, S. Mahmud, Comparative study on the effects of different annealing conditions on the surface morphology, crystallanity, and optical properties of ZnO micro/nanoparticle-baseddiscs. J. Appl. Surf. Sci. 258, 9954 (2012). https://doi.org/10.1016/j.apsusc.2012.06.056

    Article  ADS  Google Scholar 

  14. R. Miandad, R. Kumar, M.A. Barakat, C. Basheer, A.S. Aburiazaiza, A.S. Nizami, M. Rehan, Untapped conversion of plastic waste char into carbon-metal LDOs for the adsorption of Congo red. J. Colloid Interface Sci. 511, 402 (2018). https://doi.org/10.1016/j.jcis.2017.10.029

    Article  ADS  Google Scholar 

  15. T. Lavanya, S. Ramaprabhu, Few layer graphene wrapped mixed phase TiO2 nanofiber as a potential electrode material for high performance supercapacitor applications. J. Appl. Surf. Sci. 444, 414 (2018). https://doi.org/10.1016/j.apsusc.2018.02.286

    Article  Google Scholar 

  16. S.M. Hosseini, I.A. Sarsari, P. Kameli, H. Salamati, Effect of Ag doping on structural, optical, and photocatalytic properties of ZnO nanoparticles. J. Alloys and compoud. 640, 408 (2015). https://doi.org/10.1016/j.jallcom.2015.03.136

    Article  Google Scholar 

  17. R. Atchudan, T.N.J.L. Edison, S. Perumal, N. Karthik, D. Karthikeyan, M. Shanmugam, Y.R. Lee, Concurrent synthesis of nitrogen-doped carbon dots for cell imaging and ZnO@nitrogen-doped carbon sheets for photocatalytic degradation of methylene blue. J. Photochem. Photobiol. 350, 75 (2018). https://doi.org/10.1016/j.jphotochem.2017.09.038

    Article  Google Scholar 

  18. Yang, X. Liu, L. Yang, Y. Wang, Y. Zhang, J. Lang, M. Gao, B. Fang, Effect of annealing temperature on the structure and optical properties of ZnO nanoparticles. J. Alloys. Compd. 477, 632 (2009). https://doi.org/10.1016/j.jallcom.2008.10.135

    Article  Google Scholar 

  19. M. Pudukudy, A. Hetieqa, Z. Yaakob, Synthesis, characterization and photocatalytic activity of annealing dependent quasi spherical and capsule like ZnO nanostructures. J. Appl. Surf. Sci. 319, 221 (2014). https://doi.org/10.1016/j.apsusc.2014.07.050

    Article  ADS  Google Scholar 

  20. M. Jayalakshmi, M. Palaniappa, K. Balasubramanian, Single Step Solution Combustion Synthesis of ZnO/carbon Composite and its Electrochemical Characterization for Supercapacitor Application Int. J. Electrochem. Sci. 3, 96 (2008). (ISSN 1452-3981)

    Google Scholar 

  21. C.H. Kim, B.H. Kim, Zinc oxide/activated carbon nanofiber composites for high- performance supercapacitor electrodes. J. Power Sources 274, 512 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.126

    Article  ADS  Google Scholar 

  22. S. Vijayakumar, S.H. Lee, K.S. Ryu, Synthesis of Zn3V2O8 nanoplatelets for lithium- ion battery and supercapacitor applications. RSC Adv. 5, 91822 (2015). https://doi.org/10.1039/C5RA13904J

    Article  ADS  Google Scholar 

  23. T. Lu, Y. Zhanga, H. Li, L. Pana, Y. Li, Z. Suna, Electrochemical behaviors of graphene - ZnO and graphene–SnO2 composite films for supercapacitors. J. Electrochim. Acta 55, 4173 (2010). https://doi.org/10.1016/j.electacta.2010.02.095

    Article  Google Scholar 

  24. T. Lu, L. Pan, H. Li, G. Zhu, T. Lv, X. Liu, Z. Sun, T. Chen, D.H.C. Chua, Microwave- assisted synthesis of graphene-ZnO nanocomposite for electrochemical supercapacitors. J. Alloy. Compond. 509, 5488 (2011). https://doi.org/10.1016/j.jallcom.2011.02.136

    Article  Google Scholar 

  25. A. Ramadoss, S.J. Kim, Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications. J. Mater. Chem. Phys. 140, 405 (2013). https://doi.org/10.1016/j.matchemphys.2013.03.057

    Article  Google Scholar 

  26. S. Faraji, F.N. Ani, Electroless nano zinc oxide–activate carbon composite supercapacitor electrode. J. Electroceramics. 36, 122 (2016). https://doi.org/10.1007/s10832-016-0017-2

    Article  Google Scholar 

  27. R. Madhu, V. Veeramani, S.M. Chen, P. Veerakumar, S.B. Liu, N. Miyamoto, Functional porous carbon–ZnO nanocomposites for high-performance biosensors and energy storage applications. J. Phys. Chem. Chem. Phys. 18, 16466 (2016). https://doi.org/10.1039/C6CP01285J

    Article  Google Scholar 

  28. M.S. Yadav, N. Singh, A. Kumar, Synthesis and characterization of zinc oxide nanoparticles and activated charcoal based nanocomposite for supercapacitor electrode Application. J. Mater. Sci.: Mater. Electron. 29, 6853 (2018). https://doi.org/10.1007/s10854-018-8672-5

    Article  Google Scholar 

  29. G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors. J. Electrochim. Acta 92, 205 (2013). https://doi.org/10.1016/j.electacta.2012.12.120

    Article  Google Scholar 

  30. Y.L. Chen, Z.A. Hu, Y.Q. Chang, H.W. Wang, Z.Y. Zhang, Y.Y. Yang, H.Y. Wu, Zinc Oxide/Reduced Graphene Oxide Composites and Electrochemical Capacitance Enhanced by Homogeneous Incorporation of Reduced Graphene Oxide Sheets in Zinc Oxide Matrix. J. Phys. Chem. C 115, 2563 (2011). https://doi.org/10.1021/jp109597n

    Article  Google Scholar 

  31. Z. Zhang, L. Ren, W. Han, L. Meng, X. Wei, X. Qi, J. Zhong, One-pot electrodeposition synthesis of ZnO/graphene composite and its use as binder-free electrode for supercapacitor. J. Ceram. Int. 41, 4374 (2015). https://doi.org/10.1016/j.ceramint.2014.11.127

    Article  Google Scholar 

  32. X. Xiao, B. Han, G. Chen, L. Wang, Y. Wang, Preparation and electrochemical performances of carbon sphere@ZnO core-shell nanocomposites for supercapacitor applications,J. Sci. Rep. 7, 40167 (2017). https://doi.org/10.1038/srep40167

    Article  ADS  Google Scholar 

  33. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu, T. Li, H. Jin, P. Liu, J. Zhou, C.P. Wong, Z.L. Wang, Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. J. ACS Nano. 7, 2617 (2013). https://doi.org/10.1021/nn306044d

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelladurai Sasirekha.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasirekha, C., Arumugam, S. & Muralidharan, G. Influence of calcination temperature on the electrochemical performance of Sol–gel-derived ZnO/C nanocomposite electrodes. Appl. Phys. A 127, 124 (2021). https://doi.org/10.1007/s00339-020-04259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04259-x

Keywords

Navigation