Skip to main content
Log in

Structural and electrical studies of Ni- and Co-substituted Mn3O4

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, we report the structure, microstructure and conduction mechanism study of nickel and cobalt co-substituted Mn3O4 with systematic variation in cobalt concentration. Co-substituted Mn3O4 was prepared by coprecipitation technique in an aqueous solution of metal nitrates and ammonia. X-ray diffraction study of nickel and cobalt co-substituted Mn3O4 established the pure and single-phase formations crystallized in tetragonal crystal symmetry. The overall crystallite size estimated by the Scherrer equation was ~ 30 nm to 50 nm after calcination whereas it was ~ 52 nm to 177 nm after sintering. The microstructure analysis was performed from a scanning electron microscope, and the average grain size was estimated between 2.6 µm to 7.8 µm. The DC conductivity of the substitute Mn3O4 was measured between 300 °C and 720 °C using the two-probe technique. The temperature-dependent resistivity measured for all co-substituted Mn3O4 samples showed decreasing resistivity trend confirming the negative temperature coefficient of resistance behavior. The increase in activation energy as a function of Co concentration was attributed to Verwey and de Bohr hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Z. Xing, Z. Ju, J. Yang, H. Xu, Y. Qian, One-step solid state reaction to selectively fabricate cubic and tetragonal CuFe2O4 anode material for high power lithium ion batteries. Electrochim. Acta 102, 51–57 (2013)

    Article  Google Scholar 

  2. S.H. Kang, I.W. Kim, Y.H. Jeong, T.Y. Koo, Crystal growth and magnetic properties of spinel (Co, Mn)3O4. J. Cryst. Growth 344, 65–68 (2012)

    Article  ADS  Google Scholar 

  3. X. Song, Q. Ru, B. Zhang, S. Hu, B. An, Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery. J. Alloy. Compd. 585, 518–522 (2014)

    Article  Google Scholar 

  4. S.A. Hosseini, A. Niaei, D. Salari, S.R. Nabavi, Nanocrystalline AMn2O4 (A=Co, Ni, Cu) spinels for remediation of volatile organic compounds—synthesis, characterization and catalytic performance. Ceram. Int. 38, 1655–1661 (2012)

    Article  Google Scholar 

  5. Y.S. Kim, H. Kanoh, T. Hirotsu, K. Ooi, Chemical bonding ion of exchange type sites in spinel -type manganese oxides Li1.33Mn1.67O4. J. Mol. Struct. 83, 133–137 (2007)

    Google Scholar 

  6. T.M. Sankaranarayanan, R.V. Shanthi, K. Thirunavukkarasu, A. Pandurangan, S. Sivasanker, Catalytic properties of spinel-type mixed oxides in transesterification of vegetable oils. J. Mol. Catl A- Chem. 379, 234–242 (2013)

    Article  Google Scholar 

  7. H. Liu, X. Zhu, M. Cheng, Y. Cong, W. Yang, Electrochemical performances of spinel oxides as cathodes for intermediate temperature solid oxide fuel cells. Int. J. Hydrog. Energy 38, 1052–1057 (2013)

    Article  Google Scholar 

  8. N.J. Magdefrau, L. Chen, E.Y. Sun, J. Yamanis, M. Aindow, Formation of spinel reaction layers in manganese cobaltite e coated Crofer22APU for solid oxide fuel cell interconnects. J. Power Sources 227, 318–326 (2013)

    Article  Google Scholar 

  9. Y. Xu, Z. Wen, S. Wang, T. Wen, Cu doped Mn–Co spinel protective coating on ferritic stainless steels for SOFC interconnect applications. Solid State Ion. 192, 561–564 (2011)

    Article  Google Scholar 

  10. P.S. Kohli, P. Devi, P. Reddy, K.K. Raina, M.L. Singla, Synthesis and electrical behavior study of Mn3O4 nanoceramic powder for low temperature NTC thermistor. J. Mater. Sci.-Mater. Electron. 23, 1891 (2012)

    Article  Google Scholar 

  11. S. Xing, Z. Zhou, Z. Ma, Y. Wu, Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties. Electrochimi Acta 66, 271–278 (2012)

    Article  Google Scholar 

  12. L. Li, J. Liang, H. Kang, J. Fang, M. Luo, X. Jin, TEA-assisted synthesis of single- crystalline Mn3O4 octahedrons and their magnetic properties. Appl. Surf. Sci. 261, 717–721 (2012)

    Article  ADS  Google Scholar 

  13. E. Saputra, S. Muhammad, H. Sun, H.M. Ang, M.O. Tadé, S. Wang, A comparative study of spinel structured Mn3O4, Co3O4 and Fe3O4 nanoparticles in catalytic oxidation of phenolic contaminants in aqueous solutions. J. Colloid Interf. Sci. 407, 467–473 (2013)

    Article  ADS  Google Scholar 

  14. H. Bordeneuve, S.G. Fritsch, A. Rousset, S. Schuurman, V. Poulain, Structure and electrical properties of single-phase cobalt manganese oxide spinels Mn3−xCoxO4 sintered classically and by spark plasma sintering (SPS). J. Solid State Chem. 182, 396–401 (2009)

    Article  ADS  Google Scholar 

  15. M.M. Rashad, M. Bahgat, M. Rasly, S.I. Ahmed, Magnetic, oxidation and reduction behaviour of spinel Ni–Cu manganite NixCu1−xMn2O4 powders. Mater. Sci. Eng- B 178, 1076–1080 (2013)

    Article  Google Scholar 

  16. Y.W. Hong, J.H. Kim, The electrical properties of Mn3O4-doped ZnO. Ceram. Int. 30, 1301–1306 (2004)

    Article  Google Scholar 

  17. R. Sagar, P. Hudge, S. Madolappa, A.C. Kumbharkhane, R.L. Raibagkar, Electrical properties and microwave dielectric behavior of holmium substituted barium zirconium titanate ceramics. J. Alloy. Compd. 537, 197–202 (2012)

    Article  Google Scholar 

  18. F. Davar, M. Salavati-Niasari, N. Mir, K. Saberyan, M. Monemzadeh, E. Ahmadi, Thermal decomposition route for synthesis of Mn3O4 nanoparticles in presence of a novel precursor. Polyhedron 29, 1747–1753 (2010)

    Article  Google Scholar 

  19. S.K. Apte, S.D. Naik, R.S. Sonawane, B.B. Kale, A.B. NeelaPavaskar, B.K.Das Mandale, Nanosize Mn3O4 (Hausmannite) by microwave irradiation method. Mater. Res. Bull. 41, 647–654 (2006)

    Article  Google Scholar 

  20. H.K. Yang, H.M. Noh, J.H. Jeong, Low temperature synthesis and luminescence investigations of YAG:Ce, Eu nanocomposite powder for warm white light-emitting diode. Solid State Sci. 27, 43–46 (2014)

    Article  Google Scholar 

  21. H. Bordeneuve, C. Tenailleau, S. Guillemet-Fritsch, R. Smith, E. Suard, A. Rousset, Structural variations and cation distributions in Mn3−xCoxO4 (0 ≤ x ≤ 3) dense ceramics using neutron diffraction data. Solid State Sci. 12, 379–386 (2010)

    Article  ADS  Google Scholar 

  22. K. Park, D.Y. Bang, J.G. Kim, J.Y. Kim, C.H. Lee, B.H. Choi, Influence of the composition and the sintering temperature on the electrical resistivities of Ni-Mn-Co- (Fe) oxide NTC thermistors. J. Kor. Phys. Soc. 41, 251–256 (2002)

    Google Scholar 

  23. T.L. Phan, P. Zhang, H.D. Tran, S.C. Yu, Electron spin resonance study of Mn-doped metal oxides annealed at different temperatures. J Kor. Phys. Soc. 57, 1270–1276 (2010)

    Article  Google Scholar 

  24. A.S. Fawzi, A.D. Sheikh, V.L. Mathe, Structural, dielectric properties and AC conductivity of Ni(1−x)ZnxFe2O4 spinel ferrites. J. Alloy. Compd. 502, 231–237 (2010)

    Article  Google Scholar 

  25. R. Metselaar, R.E.J.V. Tol, P. Piercy, The electrical conductivity and thermoelectric power of Mn304 at high temperatures. J. Solid State C 38, 335–341 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author (RS) gratefully acknowledges the Head, Dept of Metallurgical and Materials Engineering, IIT Madras and authorities of IIT Madras, Chennai, for providing Institute Post Doctoral Fellowship. Thanks also for Prof. R L Raibagkar, Dept of Materials Science, Gulbarga University, for providing DC conductivity measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh S. Gandhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, R., Gandhi, A.S. Structural and electrical studies of Ni- and Co-substituted Mn3O4. Appl. Phys. A 127, 84 (2021). https://doi.org/10.1007/s00339-020-04254-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04254-2

Keywords

Navigation