Skip to main content
Log in

BN adamantane isomers: an optical absorption spectrum study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we have systematically investigated the structural, electronic, and optical absorption properties of the boron nitride (BN) adamantane isomers (B\(_x\)N\(_{10-x}\), with x= 4, 5 or 6), using both DFT and TD-DFT methods. These isomers were built by replacing carbon atoms of the adamantane molecule by boron and nitrogen atoms and keeping all isomers in closed-shell electronic configuration. Optimized nanostructures indicate that these BN adamantane exhibit good stability. In addition, the current study indicates that the new BN-isomers have an excellent absorption in the UV-C region, and a moderate absorption in the UV-B and UV-A regions. These characteristics enable this new BN adamantane as potential candidates to be used in the development of new nano-optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.S. Dresselhaus, M. Torrones, Carbon-based nanomaterials from a historical perspective. Proc. IEEE. 101(7), 1522–1535 (2013)

    Article  Google Scholar 

  2. Y. Hu, O.A. Shenderova, Z. Hu et al., Carbon nanostructures for advanced composites. Rep. Prog. Phys. 69, 1847–1895 (2006)

    Article  ADS  Google Scholar 

  3. Y. Zhou, A.D. Brittain, D. Kong et al., Derivatization of diamondoids for functional applications. J. Mater. Chem. C. 3(27), 6947–6961 (2015)

    Article  Google Scholar 

  4. M. Schoell, R.M.K. Carlson, Diamondoids and oil are not forever. Nature. 399, 15–16 (1999)

    Article  ADS  Google Scholar 

  5. S. Lee, M.H. Seo, Synthesis and electro-optical properties of adamantane-based host and hole-transporting material for thermal stable blue phosphorescent OLEDs. J. Nanosci. Nanotechnol. 17(10), 7292–7296 (2017)

    Article  Google Scholar 

  6. G.A. Mansoori, Diamondoid molecules. Adv. Chem.Phys. 136, 207–258 (2007)

    Google Scholar 

  7. V.N. Mochalin, I. Neitzel, B.J.M. Etzold et al., Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano. 5(9), 7494–7502 (2011)

    Article  Google Scholar 

  8. V.N. Mochalin, O. Shenderova, D. Ho et al., The properties and applications of nanodiamonds. Nat. Nanotech. 7, 11–23 (2012)

    Article  ADS  Google Scholar 

  9. M.A. Gunawan, J.-C. Hierso, D. Poinsot et al., Diamondoids: functionalization and subsequent applications of perfectly defined molecular cage hydrocarbons. New J. Chem. 38(1), 28–41 (2014)

    Article  Google Scholar 

  10. A.A. Fokin, R.I. Yurchenko, B.A. Tkachenko et al., Selective preparation of diamondoid phosphonates. J. Org. Chem. 79, 5369–5373 (2014)

    Article  Google Scholar 

  11. J.E. Dahl, S.G. Liu, R.M.K. Carlson, Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science. 299(5603), 96–99 (2003)

    Article  ADS  Google Scholar 

  12. G.C. McIntosh, M. Yoon, S. Berber et al., Diamond fragments as building blocks of functional nanostructures. Phys. Rev. B. 70, 045401 (2004)

    Article  ADS  Google Scholar 

  13. N.D. Drummond, A.J. Williamson, R.J. Needs et al., Electron emission from diamondoids: a diffusion quantum Monte Carlo study. Phys. Rev. Lett. 95, 096801 (2005)

    Article  ADS  Google Scholar 

  14. A.J. Lu, B.C. Pan, J.G. Han, Electronic and vibrational properties of diamondlike hydrocarbons. Phys. Rev. B. 72, 035447 (2005)

    Article  ADS  Google Scholar 

  15. T. Sasagawa, Z.-X. Shen, A route to tunable direct band-gap diamond devices: electronic structures of nanodiamond crystals. J. Appl. Phys. 104(7), 073704 (2008)

    Article  ADS  Google Scholar 

  16. A.A. Fokin, P.R. Schreiner, Band gap tuning in nanodiamonds: first principle computational studies. Mol. Phys. 107(8–12), 823–830 (2009)

    Article  ADS  Google Scholar 

  17. T. Demján, M. Voros, M. Palummo et al., Electronic and optical properties of pure and modified diamondoids studied by many-body perturbation theory and time-dependent density functional theory. J. Chem. Phys. 141(6), 064308 (2014)

    Article  ADS  Google Scholar 

  18. F. Marsusi, K. Mirabbaszadeh, G.A. Mansoori, Opto-electronic properties of adamantane and hydrogen terminated sila- and germa-adamantane: a comparative study. Physica E. 41(7), 1151–1156 (2009)

    Article  ADS  Google Scholar 

  19. L. Landt, K. Klünder, J.E. Dahl et al., Optical response of diamond nanocrystals as a function of particle size, shape, and symmetry. Phys. Rev. Lett. 103, 047402 (2009)

    Article  ADS  Google Scholar 

  20. W.L. Yang, J.D. Fabbri, T.M. Willey et al., Monochromatic electron photoemission from diamondoid monolayers. Science. 316(5830), 1460–1462 (2007)

    Article  ADS  Google Scholar 

  21. T. Maugh, Panel urges wide use of antiviral drug. Science. 206(4422), 1058–1060 (1979)

    Article  ADS  Google Scholar 

  22. A. Hurt, N. Komadina, Y.-M. Deng et al., Detection of adamantane-sensitive influenza A(H3N2) viruses in Australia, 2017: a cause for hope? Euro Surveill. 22(47), 1–8 (2017)

    Article  Google Scholar 

  23. T.A. Blanpied, R.J. Clarke, J.W. Johnson, Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J. Neurosci. 25(13), 3312–3322 (2005)

    Article  Google Scholar 

  24. A. Štimac, M. Šekutor, K. Mlinarić-Majerski et al., Molecules. 22(2), 297 (2017)

    Article  Google Scholar 

  25. M.A. Abdulsattar, Modeling the electronic, structural and vibrational properties of cubic SiC nanocrystals built from diamondoid structures. Silicon. 8(2), 239–244 (2016)

    Article  Google Scholar 

  26. Y.-D. Song, L. Wang, L.-M. Wu, The structures and nonlinear optical responses of Li/Na doped adamantane: A density functional study. Optik. 127(22), 10825–10837 (2016)

    Article  ADS  Google Scholar 

  27. H.M. Abduljalil, M.A. Abdulsattar, Structural and spectroscopic properties of AlP diamondoids: a DFT study. J. Eng. Appl.Sci. 13(12), 4381–4386 (2018)

    Google Scholar 

  28. H.M. Abduljalil, M.K. Khaleel, Study of the geometrical optimization and energy gap of AlAs diamondoids. JUBPAS 25(3), 1000–1009 (2017)

    Google Scholar 

  29. H.M. Abduljalil, M.A. Abdulsattar, N.A.-H.T. Al-Aaraji, Optimization parameters and some electronic properties of AlSb diamondoids: a density function theory study. JUBPAS 26(6), 77–83 (2018)

    Google Scholar 

  30. M.A. Abdulsattar, H.M. Abduljalil, H.H. Abed, Formation energies of CdSe wurtzoid and diamondoid clusters formed from Cd and Se atomic clusters. Calphad 64, 37–42 (2019)

    Article  Google Scholar 

  31. B.B. Kadhim, M.A. Abdulsattar, A.M. Ali, Quantum confinement effects of formation energies and vibrational properties of CdS clusters: A DFT study. Int. J. Mod. Phys. B 33(16), 1950163-1–1950163-11 (2019)

    Article  ADS  Google Scholar 

  32. H. Sharma, B. Saha, P.K. Bhattacharyya, Sandwiches of N-doped diamondoids and benzene via lone pair-cation and cation-pi interaction: a DFT study. New J. Chem. 41(23), 14420–14430 (2017)

    Article  Google Scholar 

  33. N. Kutsumura, R. Ohshita, J. Horiuchi et al., Synthesis of heterocyclic compounds with adamantane-like cage structures consisting of phosphorus, sulfur, and carbon. Tetrahedron. 73(34), 5214–5219 (2017)

    Article  Google Scholar 

  34. W.D.S.A. Miranda, S.S. Coutinho, M.S. Tavares et al., Ab initio vibrational and thermodynamic properties of adamantane, sila-adamantane (Si10H16), and C9Si1H16 isomers. J. Mol. Struc. 1122, 299–308 (2016)

    Article  ADS  Google Scholar 

  35. J.C. Garcia, J.F. Justo, W.V.M. Machado et al., Functionalized adamantane: building blocks for nanostructure self-assembly. Phys. Rev. B. 80(12), 125421 (2009)

    Article  ADS  Google Scholar 

  36. J.C. Garcia, J.F. Justo, W.V.M. Machado et al., Boron and nitrogen functionalized diamondoids: a first principles investigation. Diamond Relat. Mater. 19(7–9), 837–840 (2009)

    ADS  Google Scholar 

  37. Y. Fan, M. Zhao, T. He et al., Electronic properties of BN/C nanotube heterostructures. J. Appl. Phys. 107(9), 094304 (2010)

    Article  ADS  Google Scholar 

  38. M. Xiong, K. Luo, D. Yu et al., Pressure-induced boron nitride nanotube derivatives: 3D metastable allotropes. J. Appl. Phys. 121(16), 165106 (2017)

    Article  ADS  Google Scholar 

  39. M. Machado, P. Piquini, R. Mota, Electronic properties of selected BN nanocones. Mater. Charact. 50(2), 179–182 (2003)

    Article  Google Scholar 

  40. C. Zhi, Y. Bando, C. Tang et al., Electronic structure of boron nitride cone-shaped nanostructures. Phys. Rev. B. 72(24), 245419 (2005)

    Article  ADS  Google Scholar 

  41. Y. Tian, R. Wei, V. Eichhorn et al., Mechanical properties of boron nitride nanocones. J. Appl. Phys. 111(10), 104316 (1997)

    Article  ADS  Google Scholar 

  42. G. Seifert, P.W. Fowler, D. Mitchell et al., Boron-nitrogen analogues of the fullerenes: electronic and structural properties. Chem. Phys. Lett. 268(5–6), 352–358 (1997)

    Article  ADS  Google Scholar 

  43. V.V. Pokropivny, V.V. Skorokhod, G.S. Oleinik et al., Boron nitride analogs of fullerenes (the fulborenes), nanotubes, and fullerites (the fulborenites). J. Solid State Chem. 154(1), 214–222 (2000)

    Article  ADS  Google Scholar 

  44. Y. Ohta, Possible mechanism of BN fullerene formation from a boron cluster: density-functional tight-binding molecular dynamics simulations. J. Comput. Chem. 37(10), 886–895 (2016)

    Article  Google Scholar 

  45. S. Jianhao, Z. Tong, L. Xuechao et al., First-principles calculation on electronic properties of B and N co-doping carbon nanotubes. J. Semicond. 37(3), 032002 (2016)

    Article  ADS  Google Scholar 

  46. K. Luo, X. Yuan, Z. Zhao et al., New hexagonal boron nitride polytypes with triple-layer periodicity. J. Appl. Phys. 121(16), 165102 (2017)

    Article  ADS  Google Scholar 

  47. L. Liu, Y.P. Feng, Z.X. Shen, Structural and electronic properties of h-BN. Phys. Rev. B. 68(10), 104102 (2003)

    Article  ADS  Google Scholar 

  48. M. Fyta, Stable boron nitride diamondoids as nanoscale materials. Nanotech. 25(36), 365601 (2014)

    Article  Google Scholar 

  49. S. Sinthika, E.M. Kumar, V.J. Surya et al., Activation of CO and CO\(_2\) on homonuclear boron bonds of fullerene-like BN cages: first principles study. Sci. Rep. 5, 17460 (2015)

    Article  ADS  Google Scholar 

  50. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92(1), 508–517 (1990)

    Article  ADS  Google Scholar 

  51. B. Delley, From molecules to solids with the DMol\(^{3}\) approach. J. Chem. Phys. 113(18), 7756–7764 (2000)

    Article  ADS  Google Scholar 

  52. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  53. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  54. R.O. Jones, O. Gunnarsson, The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61(3), 689–746 (1989)

    Article  ADS  Google Scholar 

  55. O.V. Gritsenko, P.R.T. Schipper, E.J. Baerends, Exchange and correlation energy in density functional theory: comparison of accurate density functional theory quantities with traditional Hartree-Fock based ones and generalized gradient approximations for the molecules Li\(_2\), N\(_2\), F\(_2\). J. Chem. Phys. 107(13), 5007–5015 (1997)

    Article  ADS  Google Scholar 

  56. A. Dal Corso, A.A. Pasquarello, A. Baldereschi et al., Generalized-gradient approximations to density-functional theory: a comparative study for atoms and solids. Phys. Rev. B. 53(3), 1180–1185 (1996)

    Article  ADS  Google Scholar 

  57. M. Fuchs, M. Bockstedte, E. Pehlke et al., Pseudopotential study of binding properties of solids within generalized gradient approximations: The role of core-valence exchange correlation. Phys. Rev. B. 57(4), 2134–2145 (1998)

    Article  ADS  Google Scholar 

  58. J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 45(23), 13244–13249 (1992)

    Article  ADS  Google Scholar 

  59. D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45(7), 566–569 (1980)

    Article  ADS  Google Scholar 

  60. F.A. Hamprecht, A.J. Cohen, D.J. Tozer et al., Development and assessment of new exchange-correlation functionals. J. Chem. Phys. 109(15), 6264–6271 (1998)

    Article  ADS  Google Scholar 

  61. A.D. Boese, N.L. Doltsinis, N.C. Handy et al., New generalized gradient approximation functionals. J. Chem. Phys. 112(4), 1670–1678 (2000)

    Article  ADS  Google Scholar 

  62. A.D. Boese, N.C. Handy, A new parametrization of exchange-correlation generalized gradient approximation functionals. J. Chem. Phys. 114(13), 5497–5503 (2001)

    Article  ADS  Google Scholar 

  63. B. Delley, Hardness conserving semilocal pseudopotentials. Phys. Rev. B. 66(15), 155125 (2002)

    Article  ADS  Google Scholar 

  64. B. Delley, Time dependent density functional theory with DMol\(^{3}\). J. Phys. Condens. Matter. 22(38), 384208 (2010)

    Article  ADS  Google Scholar 

  65. E.I. Bagrii, Adamantanes: synthesis, properties, applications (Nauka, Moscow, 1989). (in Russian)

    Google Scholar 

  66. J. Fischer, J. Baumgartner, C. Marschner, Synthesis and structure of sila-adamantane. Science. 310(5749), 825 (2005)

    Article  Google Scholar 

  67. Ramachandran G, Manogaran S. Vibrational spectra of adamantanes X\(_{10}\)H\(_{16}\) and diamantanes X\(_{14}\)H\(_{20}\) (X = C, Si, Ge, Sn): a theoretical study. J. Mol. Struct. (Theochem). 2006;766:125-135

  68. J.J.P. Stewart, MOPAC manual (seventh edition) (Colorado Springs, USA, Stewart Computational Chemistry, 2016)

  69. I. Vasiliev, S. Öğüt, J.R. Chelikowsky, First-principles density-functional calculations for optical spectra of clusters and nanocrystals. Phys. Rev. B. 65(11), 115416 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the State University of Maranhão (Chamada Interna 04/2017-PPG/UEMA) and the Maranhão Research Foundation–FAPEMA for financial support from FAPEMA projects: Universal–00795/15, Universal–00798/16, and Universal–01108/19. David L. Azevedo acknowledges the support of Mato Grosso Research Foundation–FAPEMAT through the Grant PRONEX CNPq/ FAPEMAT–850109/2009, Fundação de Amparo a Pesquisa do Distrito Federal - Edital 04/2017 - FAP/DF and CNPq (Edital 12/2017-PQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edvan Moreira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, W.D.S.A., Moreira, E., Tavares, M.S. et al. BN adamantane isomers: an optical absorption spectrum study. Appl. Phys. A 127, 32 (2021). https://doi.org/10.1007/s00339-020-04229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04229-3

Keywords

Navigation