Skip to main content
Log in

Structural, electronic, magnetic and half-metallic properties of cubic perovskites NaBeO3 and KBeO3 using PBE-GGA and TB-mBJ approach: A DFT perspective

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

First-principle calculations of structural, electronic and magnetic properties of perovskite NaBeO3 and KBeO3 are investigated using Full-Potential Linearized Augmented Plane Wave (FP-LAPW) method. The structural optimization reveals that the compounds NaBeO3 and KBeO3 are stable in ferromagnetic state. The calculated formation energies confirm stability in both the perovskites. Electronic and magnetic properties are studied under GGA-PBE scheme. Further, it is improvised using TB-mBJ potential in exchange–correlation terms and delivered good results. The integer-valued total magnetic moment of 3μB in all cases signifies the half metallicity in reported compounds. The ferromagnetism predicted in both compounds is primarily due to p-orbitals of oxygen. The observed energy gaps in spins are quite larger in TB-mBJ approach and confirm half metallic ferromagnetism in compounds and hence, the compounds could be suitable for spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors of this research paper acknowledge the availability of data for all the scientific deliberations in this work.

References

  1. W.E. Pickett, J.S. Moodera, Half metallic ferromagnets. Phys. Today 54(5), 39 (2001)

    ADS  Google Scholar 

  2. S.A. Wolf et al., Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  3. A. Hirohata, H. Sukegawa, H. Yanagihara, I. Zutic, T. Seki, S. Mizukami, R. Swaminathan, Roadmap for emerging materials for spintronic device applications. IEEE Trans. Magn. 51, 1 (2015)

    Google Scholar 

  4. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, New class of materials: half metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)

    ADS  Google Scholar 

  5. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Half-metallic ferromagnets and their magneto-optical properties. J. Appl. Phys. 55, 2151 (1984)

    ADS  Google Scholar 

  6. K. Schwarz, CrO2 predicted as a half-metallic ferromagnet. J. Phys. F: Metal. Phys. 16, L211 (1986)

    ADS  Google Scholar 

  7. V. Srivastava, M. Rajagopalan, S. Sanyal, First principles study of structural, magnetic and electronic properties of half-metallic CrO2 under pressure. Eur Phys J B 61, 131–139 (2008)

    ADS  Google Scholar 

  8. V. Pardo, W.E. Pickett, Half-metallic semi-Dirac-point generated by quantum confinement in TiO2 / VO2 nanostructures. Phys. Rev. Lett. 102, 166803 (2009)

    ADS  Google Scholar 

  9. H.-M. Huang, C.K. Zhang, Z.D. He, J. Zhang, J.T. Yang, S.J. Luo, Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZ (Z= S, Se, and Te). Chin. Phys. B 27, 017103 (2018)

    ADS  Google Scholar 

  10. M.A. Sattar, M. Rashid, M.R. Hashmi, M.N. Rasool, A. Mahmood, S.A. Ahmad, Spinpolarizedcalculations of structural, electronic and magnetic properties of Half Heusler alloy FeVX (X = Si, Ge, Sn) using Ab-initio method. Mater. Sci. Semicond. Proc. 51, 48 (2016)

    Google Scholar 

  11. M. Moradi, N. Taheri, M. Rostami, Structural, electronic, magnetic and vibrationalproperties of half-Heusler NaZrZ (Z = P, As, Sb) compounds. Phys. Lett. A 382, 3004 (2018)

    ADS  Google Scholar 

  12. X.-P. Wei, J.-B. Deng, G.-Y. Mao, S.-B. Chu, Hu Xian-Ru, Half-metallic properties for the Ti2YZ (Y= Fe Co, Ni, Z= Al, Ga, In) Heusler alloys: a first-principles study. Intermetallics 29, 86–91 (2012)

    Google Scholar 

  13. S. Ishida, ShinpeiFujii, ShoeiKashiwagi, Setsuro Asano, search for half-metallic compounds in Co2MnZ (Z = IIIb, IVb, Vb Element). J. Phys. Soc. Jpn. 64(6), 2152–2157 (1995)

    ADS  Google Scholar 

  14. I. Asfour, H. Rached, S. Benalia, D. Rached, Investigation of electronic structure, magnetic properties and thermal properties of the new half-metallic ferromagnetic full-Heusler alloys Cr2GdSi1−xGex: an ab-initio study. J. Alloy. Compd. 676, 440 (2016)

    Google Scholar 

  15. Q. Mahmood, M. Hassan, N.A. Noor, Systematic study of room-temperature ferromagnetism and the optical response of Zn1−x TM x S/Se (TM = Mn, Fe Co, Ni) ferromagnets: first-principle approach. J. Phys Condens. Matter 28, 506001 (2016)

    Google Scholar 

  16. M. Hassan, Q. Mahmood, S.M. Ramay, Use of density functional theory to investigate the optical and magnetic behaviours of Ge1-xMnxTe half-metallic ferromagnets. Mater. Res. Bull. 123, 110706 (2020)

    Google Scholar 

  17. K.S. Yang, Y. Dai, B.B. Huang, M. Whangbo, On the possibility of ferromagnetism in carbon-doped anatase TiO2. Appl. Phys. Lett. 93, 132507 (2008)

    ADS  Google Scholar 

  18. H. Pan, J.B. Yi, L. Shen, R.Q. Wu, J.H. Yang, J.Y. Lin, Y.P. Feng, J. Ding, L.H. Van, J.H. Yin, Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. Lett. 99, 127201 (2007)

    ADS  Google Scholar 

  19. S.Q. Zhou, Q.Y. Xu, K. Potzger, G. Talut, R. Grötzschel, J. Fassbender, M. Vinnichenko, J. Grenzer, M. Helm, H. Hochmuth, M. Lorenz, M. Grundmann, H. Schmidt, Room temperature ferromagnetism in carbon-implanted ZnO. Appl. Phys. Lett. 93, 232507 (2008)

    ADS  Google Scholar 

  20. H. Pan, Y.P. Feng, Q.Y. Wu, Z.G. Huang, J.Y. Lin, Magnetic properties of carbon doped CdS: a first-principles and Monte Carlo study. Phys. Rev. B 77, 125211 (2008)

    ADS  Google Scholar 

  21. Y. Saeed, S. Nazir, A. Shaukat, A.H. Reshak, Ab-initio calculations of Co-based dilutedmagnetic semiconductors Cd1− xCoxX (X= S, Se, Te). J. Magn. Magn. Mater. 322, 3214 (2010)

    ADS  Google Scholar 

  22. H. Lakhdari, B. Doumi, A. Mokaddem, A. Sayede, J.P. Araujo, A. Tadjer, M. Elkeurti, Investigation of the substituting effect of chromium on the electronic structures and the half-metallic ferromagnetic properties of BaO. J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4878-2

    Article  Google Scholar 

  23. R.M. Espitia, O.S. Parra, C.O. Lopez, First-principles calculations of half-metallicferromagnetism of AlC0.0625N0.9375 and AlC0.125N0.875-zincblende. Phys B Condens Matter 552, 84 (2019)

    ADS  Google Scholar 

  24. Z. Zhu, X. Yan, Half-metallic properties of perovskite BaCrO3 and BaCr0.5Ti0.5O3 superlattice: LSDA+U calculations. J. Appl. Phys. 106, 023713 (2009)

    ADS  Google Scholar 

  25. B. Bouadjemi, S. Benata, A. Abbad, W. Benstaali, B. Bouhafs, Half-metallic ferromagnetism in PrMnO3 perovskite from first principles calculations. Solid State Commun. 168, 6–10 (2013)

    ADS  Google Scholar 

  26. B. Sabir, G. Murtaza, Q. Mahmood, R. Ahmad, K.C. Bhamu, First principles investigations of electronics, magnetic, and thermoelectric properties of rare earth based PrYO3(Y=Cr, V) perovskites. Curr. Appl. Phys. 17, 1539–1546 (2017)

    ADS  Google Scholar 

  27. S.A. Khandy, D.C. Gupta, Structural, elastic and magneto-electronic properties of half-metallic BaNpO3 perovskite. Mater. Chem. Phys. 198, 380–385 (2017)

    Google Scholar 

  28. J.B. Philipp, P. Majewski, L. Alff, A. Erb, R. Gross, T. Graf, M.S. Brandt, J. Simon, T. Walther, W. Mader, D. Topwal, D.D. Sarma, Structural and doping effects in the half-metallic A2CrWO6 (A= Sr, Ba and Ca). Phys Revi B 68(14), 144431 (2003)

    ADS  Google Scholar 

  29. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Room-temperature magneto resistance in an oxide material with an ordered double-perovskite structure. Nature (London) 395, 677–680 (1998)

    ADS  Google Scholar 

  30. Y. Moritomo, A. Asamitsu, H. Kuwahara, Y. Tokura, Giant magneto resistance of manganese oxides with a layered perovskite structure. Nature 380(6570), 141–144 (1996)

    ADS  Google Scholar 

  31. M.I. Hussain, R.M.A. Khalil, S. Boota, F. Hussain, M. Imran, G. Murtaza, A.M. Rana, M.A. Sattar, The structural, electronic and dynamical investigations of NdMn2O5 and La2CoMnO6 for optoelectronic applications: a first principles study. Optik 204, 164165 (2020)

    ADS  Google Scholar 

  32. M.I. Hussain, R.M.A. Khalil, F. Hussain, M. Imran, A.M. Rana, S. Kim, Investigations of structural, electronic and optical properties of YInO3 (Y = Rb, Cs, Fr) perovskite oxides using mBJ approximation for optoelectronic applications: a first principles study. Mater Sci. Semicond (2020). https://doi.org/10.1016/j.mssp.2020.105064

    Article  Google Scholar 

  33. M.I. Hussain, R.M.A. Khalil, F. Hussain, A.M. Rana, M. Imran, Ab-initio prediction of the mechanical, magnetic and thermoelectric behaviour of perovskite oxides XGaO3 (X = Sc, Ti, Ag) using LDA+U functional: for optoelectronic devices. J. Mol. Graph Model. (2020). https://doi.org/10.1016/j.jmgm.2020.107621

    Article  Google Scholar 

  34. M.I. Hussain, R.M.A. Khalil, F. Hussain, A.M. Rana, G. Murtaza, M. Imran, Probing the structural, electronic, mechanical strength and optical properties of tantalum-based oxide perovskites ATaO3 (A = Rb, Fr) for optoelectronic applications: first-principles investigations. Optik (2020). https://doi.org/10.1016/j.ijleo.2020.165027

    Article  Google Scholar 

  35. F. Khelfaoui, K. Amara, H. Boutaleb, M. Hamlat, K. Boudia, Y. Abderrahmane, N. Marbouh, First-principles study on structural, mechanical, and magneto-electronic properties in new half-metallic perovskite LiBeO3. Comput Cond Matter 21, e00399 (2019)

    Google Scholar 

  36. M. Hamlat, K. Boudia, K. Amara, F. Khelfaoui, N. Marbouh, Half-metallic stability of the cubic perovskite KMgO3. Comput. Cond. Matter (2020). https://doi.org/10.1016/j.cocom.2020.e00456

    Article  Google Scholar 

  37. Q. Mahmood, B. Ul Haq, M. Yaseen, A. Shahid, A. Laref, Exploring the origin of p-type half-metallic ferromagnetism in beryllium doped alkali based perovskites. Solid State Commun 299, 113654 (2019)

    Google Scholar 

  38. Q. Mahmood, M. Hassan, M. Yaseen, A. Laref, Half-metallic ferromagnetism and optical behavior in alkaline-earth metalsbased Beryllium perovskites: DFT calculations. Chem. Phys. Lett. 729, 11–16 (2019)

    ADS  Google Scholar 

  39. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constatin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    ADS  Google Scholar 

  40. L.J. Sham, M. Schluter, Density-functional theory of the energy gap. Phys. Rev. Lett. 51, 1888 (1983)

    ADS  Google Scholar 

  41. M. Grüning, A. Marini, A. Rubio, Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators. J. Chem. Phys. 124, 154108 (2006)

    ADS  Google Scholar 

  42. D. Koller, F. Tran, P. Blaha, Improving the modified Becke-Johnson exchange potential. Phys. Rev. B. 85, 155109 (2012)

    ADS  Google Scholar 

  43. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964)

    ADS  MathSciNet  Google Scholar 

  44. W. Kohn, L.J. Sham, Self consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    ADS  MathSciNet  Google Scholar 

  45. K. Schwarz, P. Blaha, Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259–273 (2003)

    Google Scholar 

  46. P. Blaha, K. Schwarz, P. Sorantin, S. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 399–415 (1990)

    ADS  Google Scholar 

  47. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  48. J.P. Perdew, M. Levy, Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Phys. Rev. Lett. 51, 1884 (1983)

    ADS  Google Scholar 

  49. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 23, 5048 (1981)

    ADS  Google Scholar 

  50. H. Jiang, Band gaps from the Tran-Blaha modified Becke-Johnson approach: a systematic investigation. J. Chem. Phys. 138, 134115 (2013)

    ADS  Google Scholar 

  51. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  52. S.D. Guo, Improved half-metallic gap of zinc blende half-metal superlattices with the Tran-Blaha modified Becke-Johnson density functional. J. Magn. Magn. Mater 412, 156–162 (2016)

    ADS  Google Scholar 

  53. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  54. F. Birch, The effect of pressure upon the elastic parameters of isotropic solids according to Murnaghan's theory of finite strain. J. Appl. Phys. 9, 279–288 (1938)

    ADS  MATH  Google Scholar 

  55. R.J. Soulen Jr., J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, J.M.D. Coey, Science 282, 85–88 (1998)

    ADS  Google Scholar 

  56. O. Volnianska, P. Boguslawski, Magnetism of solids resulting from spin polarization of p-orbitals. J. Phys. Condens. Matter 22, 073202 (2010)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge Prof. P. Blaha and Prof. K. Schwarz of Vienna, Austria for providing WIEN2k code for our work in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Sheik Sirajuddeen M.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwin, V., M, M.S.S., Ahamed, M.B. et al. Structural, electronic, magnetic and half-metallic properties of cubic perovskites NaBeO3 and KBeO3 using PBE-GGA and TB-mBJ approach: A DFT perspective. Appl. Phys. A 126, 880 (2020). https://doi.org/10.1007/s00339-020-03977-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03977-6

Keywords

Navigation