Skip to main content
Log in

Gallium-doped zinc oxide films with diverse nanomorphologies grown via sol–gel united spin coating technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Some gallium-doped zinc oxide nanofilms (GZONFs) with diverse morphologies were produced on the p-type Si (100) substrate by the sol–gel united spin coating. The thermally annealed nanofilms were characterized using different techniques to determine the influence of various Ga contents (0–5%) on their structures, morphologies, optical and electrical characteristics. The XRD patterns of the as-prepared nanofilms displayed the existence of the single-phase polycrystalline particles with varying sizes (55–36 nm). The band gap values of these GZONFs were ranged from 3.227–3.269 eV. The nanofilm produced with 1% of Ga exhibited the minimal electrical resistivity ≈ 4.6429 × 10–3 Ω cm, highest carrier density ≈ 1.37648 × 1020 cm−3 and Hall mobility ≈ 9.779 cm2/V s. It was shown that the overall properties of the proposed GZONFs can be customized by adjusting the concentration of Ga doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Figure 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.Y. Cheong, N. Muti, S.R. Ramanan, Thin Solid Films 410, 142–146 (2002)

    ADS  Google Scholar 

  2. M. Ohyama, H. Kozuka, T. Yoko, J. Am. Ceram. Soc. 81, 1622–1632 (1998)

    Google Scholar 

  3. M.K. Van Veen, C.H.M. Van der Werf, J.K. Rath, R.E.I. Schropp, Thin Solid Films 430, 216–219 (2003)

    ADS  Google Scholar 

  4. A. Alkahlout, Phys. Res. Int. 2015, 8 (2015)

    Google Scholar 

  5. T. Yao, S.K. Hong, eds., Oxide and nitride semiconductors: Processing, properties, and applications. Springer Science & Business Media. 12 (2009)

  6. T. Minami, Semicond. Sci. Technol. 20, 35 (2005)

    ADS  Google Scholar 

  7. A. AlKahlout, N.A. Dahoudi, S. Heusing, K. Moh, R. Karos, P.W. De Oliveira, Nanosci. Nanotechnol. Lett. 6, 37–43 (2014)

    Google Scholar 

  8. A. AlKahlout, J. Sol Gel Sci. Technol. 67, 331–338 (2013)

    Google Scholar 

  9. E. Fortunato, L. Raniero, L. Silva, A. Goncalves, A. Pimentel, P. Barquinha, H. Aguas, L. Pereira, G. Goncalves, I. Ferreira, E. Elangovan, Sol. Energy Mater. Sol. Cells 92, 1605–1610 (2008)

    Google Scholar 

  10. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda, Thin Solid Films 445, 263–267 (2003)

    ADS  Google Scholar 

  11. H. Ohta, M. Orita, M. Hirano, H. Tanji, H. Kawazoe, H. Hosono, Appl. Phys. Lett. 76, 2740–2742 (2000)

    ADS  Google Scholar 

  12. A. Kuroyanagi, Jpn. J. Appl. Phys. 28, 219 (1989)

    ADS  Google Scholar 

  13. P. Marie, X. Portier, J. Cardin, Phys. Status Solidi. (a) 205, 1943–1946 (2008)

    ADS  Google Scholar 

  14. R. Groenen, J.L. Linden, H.R.M. Van Lierop, D.C. Schram, A.D. Kuypers, M.C.M. Van De Sanden, Appl. Surf. Sci. 173, 40–43 (2001)

    ADS  Google Scholar 

  15. J. Nishino, T. Kawarada, S. Ohshio, H. Saitoh, K. Maruyama, K. Kamata, J. Mater. Sci. Lett. 16, 629–631 (1997)

    Google Scholar 

  16. E.S. Shim, H.S. Kang, J.S. Kang, J.H. Kim, S.Y. Lee, Appl. Surf. Sci. 186, 474–476 (2002)

    ADS  Google Scholar 

  17. P. Nunes, B. Fernandes, E. Fortunato, P. Vilarinho, R. Martins, Thin Solid Films 337, 176–179 (1999)

    ADS  Google Scholar 

  18. Z. Fu, B. Lin, J. Zu, Thin Solid Films 402, 302–306 (2002)

    ADS  Google Scholar 

  19. W. Tang, D.C. Cameron, Thin Solid Films 238, 83–87 (1994)

    ADS  Google Scholar 

  20. H. Wei, M. Li, Z. Ye, Z. Yang, Y. Zhang, Mater. Lett. 65, 427–429 (2011)

    Google Scholar 

  21. P.K. Nayak, J. Yang, J. Kim, S. Chung, J. Jeong, C. Lee, Y. Hong, J. Phys. D Appl. Phys. 42, 035102 (2008)

    ADS  Google Scholar 

  22. S. Kurtaran, S. Aldağ, G. Öföfoğlu, Preprints 2, 16 (2019)

    Google Scholar 

  23. T.P. Rao, M.S. Kumar, J. Cryst. Process Technol. 2, 72 (2012)

    Google Scholar 

  24. G. Pineda-Hernandez, A. Escobedo-Morales, U. Pal, E. Chigo-Anota, Mater. Chem. Phys. 135, 810–817 (2012)

    Google Scholar 

  25. G. Mo, Z. Tang, H. He, J. Liu, Y. Fu, X. Shen, J. Mater. Sci. Mater. Electron. 30, 12804–12811 (2019)

    Google Scholar 

  26. A.U.H.S. Rana, A. Shahid, J.Y. Lee, H.S. Kim, Phys. Status Solidi (a) 215, 1700763 (2018)

    ADS  Google Scholar 

  27. P. Li, W. Wang, X. Zhang, L. Zhang, X. Yang, B. Zhao, Front. Chem. 7, 144 (2019)

    ADS  Google Scholar 

  28. H.J. Al-Asedy, S.A. Al-Khafaji, H. Bakhtiar, N. Bidin, Appl. Phys. A 124, 223 (2018)

    ADS  Google Scholar 

  29. M.A. Gondal, Q.A. Drmosh, Z.H. Yamani, T.A. Saleh, Appl. Surf. Sci. 256, 298–304 (2009)

    ADS  Google Scholar 

  30. H.J. Al-Asedy, A.A. Ati, N. Bidin, S.L. Lee, Appl. Phys. A 123, 665 (2017)

    ADS  Google Scholar 

  31. D. Behera, B.S. Acharya, J. Lumin. 128, 1577–1586 (2008)

    Google Scholar 

  32. H.S.B. Hong, G.S. Chung, Sens. Actuators B Chem. 150, 681–685 (2010)

    Google Scholar 

  33. S. Mridha, D. Basak, J. Phys. D Appl. Phys. 40, 6902 (2007)

    ADS  Google Scholar 

  34. I.Y. Bu, J. Alloys Compd. 509, 2874–2878 (2011)

    Google Scholar 

  35. E.F. Keskenler, G. Turgut, S. Doğan, Superlattices Microstruct. 52(1), 107–115 (2012)

    ADS  Google Scholar 

  36. N.S. Kumar, K.V. Bangera, G.K. Shivakumar, Appl. Nanosci. 4, 209–216 (2014)

    Google Scholar 

  37. R. Maity, S. Das, M.K. Mitra, K.K. Chattopadhyay, Phys. E Low Dimens. Syst. Nanostruct. 25, 605–612 (2005)

    ADS  Google Scholar 

  38. E.S. Jang, J.H. Won, S.J. Hwang, J.H. Choy, Adv. Mater. 18, 3309–3312 (2006)

    Google Scholar 

  39. L. Duan, X. Zhao, Y. Zhang, J. Zhou, T. Zhao, W. Geng, J. Mater. Sci. Mater. Electron. 28, 8669–8674 (2017)

    Google Scholar 

  40. S. Baruah, J. Dutta, Sci. Technol. Adv. Mater. 10, 013001 (2009)

    Google Scholar 

  41. M.N. Cardoza-Contreras, A. Vásquez-Gallegos, A. Vidal-Limon, J.M. Romo-Herrera, S. Águila, O.E. Contreras, Catalysts 9, 165 (2019)

    Google Scholar 

  42. A.H. Rakhsha, H. Abdizadeh, E. Pourshaban, M.R. Golobostanfard, in AIP Conference Proceedings, vol. 1920, no. 1. (AIP Publishing LLC, 2018), p. 020022

  43. D.T. Phan, G.S. Chung, Sens. Actuators B Chem. 187, 191–197 (2013)

    Google Scholar 

  44. A.R. Kaul, O.Y. Gorbenko, A.N. Botev, L.I. Burova, Superlattices Microstruct. 38, 272–282 (2005)

    ADS  Google Scholar 

  45. Y. Liu, J. Lian, Appl. Surf. Sci. 253, 3727–3730 (2007)

    ADS  Google Scholar 

  46. D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Cryst. Growth 184, 605–609 (1998)

    ADS  Google Scholar 

  47. J.D. Ye, S.L. Gu, S.M. Zhu, S.M. Liu, Y.D. Zheng, R. Zhang, Y. Shi, Appl. Phys. Lett. 86, 192111 (2005)

    ADS  Google Scholar 

  48. S. Yamauchi, Y. Goto, T. Hariu, J. Cryst. Growth 260, 1–6 (2004)

    ADS  Google Scholar 

  49. J. Lim, K. Shin, H.W. Kim, C. Lee, J. Lumin. 109, 181–185 (2004)

    Google Scholar 

  50. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943–945 (2001)

    ADS  Google Scholar 

  51. S.A. Studenikin, M. Cocivera, J. Appl. Phys. 91, 5060–5065 (2002)

    ADS  Google Scholar 

  52. V. Kumar, R.G. Singh, N. Singh, A. Kapoor, R.M. Mehra, L.P. Purohit, Mater. Res. Bull. 48, 362–366 (2013)

    Google Scholar 

  53. O. Makuku, F. Mbaiwa, T.S. Sathiaraj, Ceram. Int. 42, 14581–14586 (2016)

    Google Scholar 

  54. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Ceram. Int. 42, 10066–10070 (2016)

    Google Scholar 

  55. F.J. Serrao, S.M. Dharmaprakash, J. Optoelectron. Adv. Mater. 18, 672 (2016)

    Google Scholar 

  56. M.C. Huang, J.C. Lin, S.H. Cheng, W.H. Weng, Surf. Interface Anal. 49, 434–440 (2017)

    Google Scholar 

  57. F. Chaabouni, B. Khalfallah, M. Abaab, Thin Solid Films 617, 95–102 (2016)

    ADS  Google Scholar 

  58. D.W. Kang, S.J. Kim, T.H. Moon, H.M. Lee, M.K. Han, Jpn. J. Appl. Phys. 49, 125801 (2010)

    ADS  Google Scholar 

  59. C.Y. Tsay, K.S. Fan, C.M. Lei, J. Alloys Compd. 512, 216–222 (2012)

    Google Scholar 

  60. B. Joseph, P.K. Manoj, V.K. Vaidyan, Ceram. Int. 32, 487–493 (2006)

    Google Scholar 

  61. F.H. Wang, C.F. Yang, M.C. Liu, Int. J. Photoenergy 2013, 7 (2013)

    Google Scholar 

  62. R. Wang, A.W. Sleight, D. Cleary, Chem. Mater. 8, 433–439 (1996)

    Google Scholar 

  63. G.M. Nam, M.S. Kwon, J. Inf. Displ. 9, 8–11 (2008)

    Google Scholar 

  64. L.J. Meng, M.P. Dos Santos, Thin Solid Films 250, 26–32 (1994)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial assistance form the Higher Education and Scientific Research, University of Al-Qadisiyah, Faculty of Education, Physics Department of Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayder J. Al-Asedy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Asedy, H.J., Al-khafaji, S.A. Gallium-doped zinc oxide films with diverse nanomorphologies grown via sol–gel united spin coating technique. Appl. Phys. A 126, 701 (2020). https://doi.org/10.1007/s00339-020-03891-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03891-x

Keywords

Navigation