Skip to main content
Log in

Effects of the Bi3+ substitution on the structural, vibrational, and magnetic properties of bismuth layer-structured ferroelectrics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bismuth layer-structured ferroelectric Bi3R2Ti3FeO15 (R = Bi, Nd, and Gd) ceramics were synthesized by conventional solid-state reaction. All the samples showed an orthorhombic structure with A21am space group. Bi3Nd2Ti3FeO15 and Bi3Gd2Ti3FeO15 presented a reduction in the orthorhombicity when compared to Bi5Ti3FeO15. The magnetic susceptibility of all samples followed the Curie–Weiss law, with negative values of the Curie–Weiss temperature, demonstrating that the magnetic interactions are antiferromagnetic in nature. The magnetization curves suggested a weak canted antiferromagnetic behavior for temperatures below 25 K, followed by a linear behavior in the curves at high temperatures. Mössbauer spectroscopy measurements revealed an increase of the quadrupole splitting values as the temperature decreases, indicating that the samples present local distortions, favoring the existence of weak ferromagnetic phase via the antisymmetric Dzyaloshinskii–Moriya interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y. Liu, L. Fan, W. Yi, C. Yan, J. Ma, Q. Ji, Q. Lin, Microstructure and ferroelectric properties of bi-excess Bi4Ti3O12 thin films grown on Si and Pt/Ti/SiO2/Si substrates. Ferroelectrics 554, 144–149 (2020). https://doi.org/10.1080/00150193.2019.1684756

    Article  Google Scholar 

  2. S.K. Badge, A.V. Deshpande, La3+ modified bismuth titanate (BLT) prepared by sol–gel synthesis: structural, dielectric, impedance and ferroelectric studies. Solid State Ionics (2020). https://doi.org/10.1016/j.ssi.2020.115270

    Article  Google Scholar 

  3. T.P. Wendari, S. Arief, N. Mufti, A. Insani, J. Baas, G.R. Blake, Zulhadjri, Structural and multiferroic properties in double-layer Aurivillius phase Pb0.4Bi2.1La0.5Nb1.7Mn0.3O9 prepared by molten salt method. J. Alloys Compd. 820, 153145 (2020). https://doi.org/10.1016/j.jallcom.2019.153145

    Article  Google Scholar 

  4. T. Patri, R. Patangi, K.R. Kandula, K. Banerjee, S. Asthana, P.D. Babu, Effect of W/Co co-substitution on structural, microstructural, magnetic and electrical properties of Bi4NdFeTi3O15 aurivillius compound. J. Mater. Sci. Mater. Electron. 31, 874–884 (2020). https://doi.org/10.1007/s10854-019-02593-2

    Article  Google Scholar 

  5. Z.Z. Ding, X.Q. Tang, J.C. Ren, X.Z. Liu, Y.K. Chen, Z.Y. Xia, L. Cao, X.Q. Chen, F.J. Yang, Tuning the band gaps of ferroelectric Aurivillius compounds by transition metal substitution. Ceram. Int. 46, 8314–8319 (2020). https://doi.org/10.1016/j.ceramint.2019.12.062

    Article  Google Scholar 

  6. C. Long, T. Du, W. Ren, Significant ion conduction in Cu acceptor-substituted bismuth titanate polycrystalline ceramics. J. Mater. Sci. 55, 5715–5729 (2020). https://doi.org/10.1007/s10853-020-04431-x

    Article  ADS  Google Scholar 

  7. J. Li, Y. Pu, X. Wang, Y. Shi, R. Shi, M. Yang, W. Wang, X. Guo, X. Peng, Effect of yttrium doping on the structure, dielectric multiferroic and magnetodielectric properties of Bi5Ti3FeO15 ceramics. J. Mater. Sci. Mater. Electron. 31, 4345–4353 (2020). https://doi.org/10.1007/s10854-020-02992-w

    Article  Google Scholar 

  8. Y. Jiang, X. Jiang, C. Chen, X. Nie, X. Huang, X. Jiang, J. Zhuang, L. Zheng, Z. Chen, Effect of tantalum substitution on the structural and electrical properties of BaBi8Ti7O27 intergrowth ceramics. Ceram. Int. 46, 8122–8129 (2020). https://doi.org/10.1016/j.ceramint.2019.12.039

    Article  Google Scholar 

  9. L. Guo, M. Shi, J. Fu, Y. Xu, R. Zuo, Z. Zhao, Z. Si, K. Hu, E. Men, Ferroelectric and photoluminescent properties of Eu3+-doped Bi4Ti3O12 films prepared via the spin-coating method. J. Mater. Sci. Mater. Electron. 1, 4–13 (2020). https://doi.org/10.1007/s10854-020-03190-4

    Article  Google Scholar 

  10. X. Gao, L. Li, D. Zhang, X. Wang, J. Jian, Z. He, H. Wang, Novel layered Bi3MoMTO9 (MT = Mn, Fe, Co and Ni) thin films with tunable multifunctionalities. Nanoscale 12, 5914–5921 (2020). https://doi.org/10.1039/d0nr00083c

    Article  Google Scholar 

  11. A. Ando, T. Sawada, H. Ogawa, M. Kimura, Y. Sakabe, Fine-tolerance resonator applications of bismuth-layer-structured ferroelectric ceramics fine-tolerance resonator applications of bismuth-layer-structured ferroelectric ceramics. Jpn. J. Appl. Phys. 7057, 7057–7061 (2002). https://doi.org/10.1143/JJAP.41.7057

    Article  ADS  Google Scholar 

  12. P.Y. Chu, R.E. Jones, P. Zurcher, D.J. Taylor, B. Jiang, S.J. Gillespie, Characteristics of spin-on ferroelectric SrBi2Ta2O9 thin film capacitors for ferroelectric random access memory applications. J. Mater. Res. 11, 1065–1068 (1996)

    Article  ADS  Google Scholar 

  13. A. Orlando, J.F. Scott, R. Ramesh, Device physics of ferroelectric memories. Ferroelectrics 183, 51–63 (1996). https://doi.org/10.1080/00150199608224091

    Article  Google Scholar 

  14. N.A. Lomanova, M.I. Morozov, V.L. Ugolkov, V.V. Gusarov, Properties of aurivillius phases in the Bi4Ti3O12–BiFeO3 system. Inorg. Mater. 42, 189–195 (2006). https://doi.org/10.1134/S0020168506020142

    Article  Google Scholar 

  15. N.A. Lomanova, V.G. Semenov, V.V. Panchuk, V.V. Gusarov, Structural changes in the homologous series of the Aurivillius phases Bin+1Fen3Ti3O3n+3. J. Alloys Compd. 528, 103–108 (2012). https://doi.org/10.1016/j.jallcom.2012.03.040

    Article  Google Scholar 

  16. B. Aurivillius, Mixed bismuth oxides with layer lattices. 1. The Structure Type of CaNb2Bi2O9. Arki Kemi 1, 463–480 (1949)

    Google Scholar 

  17. F. Kubel, H. Schmid, X-ray room temperature structure from single crystal data, powder diffraction measurements and optical studies of the aurivillius phase Bi5(Ti3Fe)O15. Ferroelectrics 129, 101–112 (1992). https://doi.org/10.1080/00150199208016980

    Article  Google Scholar 

  18. M. García-Guaderrama, L. Fuentes, M.E. Montero-Cabrera, A. Márquez-Lucero, M.E. Villafuerte-Castrejón, Molten salt synthesis and crystal structure of Bi5Ti3FeO15. Integr. Ferroelectr. An Int. J. (2005). https://doi.org/10.1080/10584580590965401

    Article  Google Scholar 

  19. C.H. Hervoches, A. Snedden, R. Riggs, S.H. Kilcoyne, P. Manuel, P. Lightfoot, Structural behavior of the four-layer aurivillius-phase ferroelectrics SrBi4Ti4O15 and Bi5Ti3FeO15. J. Solid State Chem. 164, 280–291 (2002). https://doi.org/10.1006/jssc.2001.9473

    Article  ADS  Google Scholar 

  20. A. Mohapatra, P.R. Das, R.N.P. Choudhary, Structural and electrical properties of Bi5Ti3FeO15 ceramics. J. Mater. Sci. Mater. Electron. 25, 1348–1353 (2014). https://doi.org/10.1007/s10854-014-1733-5

    Article  Google Scholar 

  21. M. García-Guaderrama, G.G.C. Arizaga, A. Durán, Effect of synthesis conditions on the morphology and crystal structure of biferroic Bi5Ti3FeO15. Ceram. Int. 40, 7459–7465 (2014). https://doi.org/10.1016/j.ceramint.2013.12.094

    Article  Google Scholar 

  22. E. Jartych, T. Pikula, M. Mazurek, A. Lisinska-Czekaj, D. Czekaj, K. Gaska, J. Przewoznik, C. Kapusta, Z. Surowie, Antiferromagnetic spin glass-like behavior in sintered multiferroic Aurivillius Bim+1Ti3Fem-3O3m+3 compounds. J. Magn. Magn. Mater. 342, 27–34 (2013). https://doi.org/10.1016/j.jmmm.2013.04.046

    Article  ADS  Google Scholar 

  23. J.-B. Li, Y.P. Huang, G.H. Rao, G.Y. Liu, J. Luo, J.R. Chen, J.K. Liang, Ferroelectric transition of Aurivillius compounds Bi5Ti3FeO15 and Bi6Ti3Fe2O18. Appl. Phys. Lett. 96, 222903 (2010). https://doi.org/10.1063/1.3447372

    Article  ADS  Google Scholar 

  24. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2836410

    Article  Google Scholar 

  25. P.P. Jiang, Z.H. Duan, L.P. Xu, X.L. Zhang, Y.W. Li, Z.G. Hu, J.H. Chu, Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: an interband electronic transition evidence. J. Appl. Phys. 115, 0–6 (2014). https://doi.org/10.1063/1.4866421

    Article  Google Scholar 

  26. X.Y. Mao, W. Wang, X.B. Chen, Electrical and magnetic properties of Bi5FeTi3O15 compound prepared by inserting BiFeO3 into Bi4Ti3O12. Solid State Commun. 147, 186–189 (2008). https://doi.org/10.1016/j.ssc.2008.05.025

    Article  ADS  Google Scholar 

  27. X.W. Dong, K.F. Wang, J.G. Wan, J.S. Zhu, J.M. Liu, Magnetocapacitance of polycrystalline Bi5Ti3FeO15 prepared by sol-gel method. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2908219

    Article  Google Scholar 

  28. M. Wu, Z. Tian, S. Yuan, Z. Huang, Magnetic and optical properties of the Aurivillius phase Bi5Ti3FeO15. Mater. Lett. 68, 190–192 (2012). https://doi.org/10.1016/j.matlet.2011.09.113

    Article  Google Scholar 

  29. H. Zhao, H. Kimura, Z. Cheng, M. Osada, J. Wang, X. Wang, S. Dou, Y. Liu, J. Yu, T. Matsumoto, T. Tohei, N. Shibata, Y. Ikuhara, Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film. Sci. Rep. 4, 4–11 (2014). https://doi.org/10.1038/srep05255

    Article  Google Scholar 

  30. T. Pikula, J. Dzik, P. Guzdek, V.I. Mitsiuk, Z. Surowiec, R. Panek, E. Jartych, Magnetic properties and magnetoelectric coupling enhancement in Bi5Ti3FeO15 ceramics. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.06.008

    Article  Google Scholar 

  31. M. Mazurek, E. Jartych, D. Oleszak, Mössbauer studies of Bi5Ti3FeO15 electroceramic prepared by mechanical activation. Prz. Elektrotechniczny. 88, 256–258 (2012)

    Google Scholar 

  32. E. Jartych, M. Mazurek, A. Lisińska-Czekaj, D. Czekaj, Hyperfine interactions in some Aurivillius Bim+1Ti3Fem3O3m+3 compounds. J. Magn. Magn. Mater. 322, 51–55 (2010). https://doi.org/10.1016/j.jmmm.2009.08.022

    Article  ADS  Google Scholar 

  33. Z. Huang, G.-S. Wang, Y.-C. Li, R.-H. Liang, F. Cao, X.-L. Dong, Electrical properties of (Na, Ce) doped Bi5Ti3FeO15 ceramics. Phys. Status Solidi. 208, 1047–1051 (2011). https://doi.org/10.1002/pssa.201000080

    Article  ADS  Google Scholar 

  34. S. Sun, C. Liu, G. Wang, Z. Chen, T. Chen, R. Peng, Y. Lu, A. Belik, Structural and physical properties of mixed-layer Aurivillius-type multiferroics. J. Am. Ceram. Soc. 99, 3033–3038 (2016). https://doi.org/10.1111/jace.14312

    Article  Google Scholar 

  35. J. Xiao, H. Zhang, Y. Xue, Z. Lu, X. Chen, P. Su, F. Yang, X. Zeng, The influence of Ni-doping concentration on multiferroic behaviors in Bi4NdTi3FeO15 ceramics. Ceram. Int. 41, 1087–1092 (2015). https://doi.org/10.1016/j.ceramint.2014.09.033

    Article  Google Scholar 

  36. A.A. Coelho, TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++: An. J. Appl. Crystallogr. 51, 210–218 (2018). https://doi.org/10.1107/S1600576718000183

    Article  Google Scholar 

  37. M.K. Jeon, Y. Il Kim, J.M. Sohn, S.I. Woo, Cation disorder study of Bi3.25La0.25Ti3O12 by neutron powder diffraction and Raman spectroscopy. J. Phys. D Appl. Phys. 37, 2588–2592 (2004). https://doi.org/10.1088/0022-3727/37/18/015

    Article  ADS  Google Scholar 

  38. Z. Peng, D. Yan, Q. Chen, D. Xin, D. Liu, D. Xiao, J. Zhu, Crystal structure, dielectric and piezoelectric properties of Ta/W co-doped Bi3TiNbO9 Aurivillius phase ceramics. Curr. Appl. Phys. 14, 1861–1866 (2014). https://doi.org/10.1016/j.cap.2014.10.011

    Article  ADS  Google Scholar 

  39. M.K. Jeon, Y. Il Kim, S.H. Nahm, S.I. Woo, Crystal structure of Bi4−xCexTi3O12 (x ≤ 0, 025, 05 and 075) studied by Raman spectroscopy and neutron powder diffraction. J. Phys. D Appl. Phys. 39, 5080–5085 (2006). https://doi.org/10.1088/0022-3727/39/23/027

    Article  ADS  Google Scholar 

  40. C. Long, Q. Chang, H. Fan, Differences in nature of electrical conductions among Bi4Ti3O12-based ferroelectric polycrystalline ceramics. Sci. Rep. 7, 1–15 (2017). https://doi.org/10.1038/s41598-017-03266-y

    Article  ADS  Google Scholar 

  41. X. Zuo, M. Zhang, E. He, B. Guan, Y. Qin, J. Yang, X. Zhu, J. Dai, Structural, magnetic, and dielectric properties of W/Cr co-substituted Aurivillius Bi5FeTi3O15. J. Alloys Compd. 726, 1040–1046 (2017). https://doi.org/10.1016/j.jallcom.2017.08.077

    Article  Google Scholar 

  42. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Cryst. 41, 653–658 (2008). https://doi.org/10.1107/S0021889808012016

    Article  Google Scholar 

  43. R.A. Armstrong, R.E. Newnham, Bismuth titanate solid solutions. Mater. Res. Bull. 7, 1025–1034 (1972). https://doi.org/10.1016/0025-5408(72)90154-7

    Article  Google Scholar 

  44. R. Ti, F. Huang, W. Zhu, J. He, T. Xu, C. Yue, J. Zhao, X. Lu, J. Zhu, Multiferroic and dielectric properties of Bi4LaTi3FeO15 ceramics. Ceram. Int. 41, S453–S457 (2015). https://doi.org/10.1016/j.ceramint.2015.03.157

    Article  Google Scholar 

  45. F. Rehman, H.-B. Jin, L. Wang, A. Tanver, D.-Z. Su, J.-B. Li, Effect of Nd 3+ substitution for Bi3+ on the dielectric properties and conduction behavior of Aurivillius NdBi4Ti3FeO15 ceramics. RSC Adv. 6, 21254–21260 (2016). https://doi.org/10.1039/C5RA27821J

    Article  Google Scholar 

  46. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  47. Y. Shimakawa, Y. Kubo, Y. Tauchi, T. Kamiyama, H. Asano, F. Izumi, Structural distortion and ferroelectric properties of SrBi2(Ta1xNbx)2O9. Appl. Phys. Lett. 77, 2749–2751 (2000). https://doi.org/10.1063/1.1319509

    Article  ADS  Google Scholar 

  48. D. Zhang, L. Feng, W. Huang, W. Zhao, Z. Chen, X. Li, Oxygen vacancy-induced ferromagnetism in Bi4NdTi3FeO15 multiferroic ceramics. J. Appl. Phys. (2016). https://doi.org/10.1063/1.4965702

    Article  Google Scholar 

  49. F.A.A. Aguiar, A.J.M. Sales, B.S. Arau, Effect of V2O5 addition on the phase composition of Bi5FeTi3O15 ceramic and RF/microwave dielectric properties. J. Electr. Mater. 46, 2467–2475 (2017). https://doi.org/10.1007/s11664-017-5312-4

    Article  ADS  Google Scholar 

  50. W.C. Ferreira, G. Luiz, C. Rodrigues, B.S. Araújo, C. William, D.A. Paschoal, A.P. Ayala, F.A. Andrade, D. Aguiar, P. Basílio, A. Fechine, A. Nonato, A. De Abreu, Pressure-induced structural phase transitions in the multiferroic four-layer Aurivillius ceramic Bi5FeTi3O15. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.04.122

    Article  Google Scholar 

  51. D.L. Rousseau, R.P. Bauman, S.P.S. Porto, Normal mode determination in crystals. J. Raman Spectrosc. 10, 253–290 (1981). https://doi.org/10.1002/jrs.1250100152

    Article  ADS  Google Scholar 

  52. M.I. Aroyo, J.M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, H. Wondratschek, Bilbao crystallographic server: I. Databases and crystallographic computing programs. Zeitschrift Fur Krist. 221, 15–27 (2006). https://doi.org/10.1524/zkri.2006.221.1.15

    Article  ADS  Google Scholar 

  53. M.I. Aroyo, A. Kirov, C. Capillas, J.M. Perez-Mato, H. Wondratschek, Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr. Sect. A Found. Crystallogr. 62, 115–128 (2006). https://doi.org/10.1107/S0108767305040286

    Article  ADS  MATH  Google Scholar 

  54. M.I. Aroyo, J.M. Perez-Mato, D. Orobengoa, E. Tasci, G. De La Flor, A. Kirov, Crystallography online: Bilbao crystallographic server. Bulg. Chem. Commun. 43, 183–197 (2011)

    Google Scholar 

  55. P.R. Graves, G. Hua, S. Myhra, J.G. Thompson, The Raman modes of the Aurivillius phases: temperature and polarization dependence. J. Solid State Chem. 114, 112–122 (1995). https://doi.org/10.1006/jssc.1995.1017

    Article  ADS  Google Scholar 

  56. P.P. Jiang, X.L. Zhang, P. Chang, Z.G. Hu, W. Bai, Y.W. Li, Spin–phonon interactions of multiferroic Bi4Ti3O12–BiFeO3 ceramics: low-temperature Raman scattering and infrared reflectance spectra investigations. J. Appl. Phys. 115, 1–6 (2014). https://doi.org/10.1063/1.4870054

    Article  Google Scholar 

  57. M.D. Rodríguez Aranda, Á.G. Vázquez-Rodríguez, U. Salazar-Kuri, M.E. Mendoza, H.R. Navarro-Contreras, Raman effect in multiferroic Bi5Fe1+xTi3−xO15 solid solutions: a temperature study. J. Appl. Phys. (2018). https://doi.org/10.1063/1.5019291

    Article  Google Scholar 

  58. X. Mao, H. Sun, W. Wang, Y. Lu, X. Chen, Effects of co-substitutes on multiferroic properties of Bi5FeTi3O15 ceramics. Solid State Commun. 152, 483–487 (2012). https://doi.org/10.1016/j.ssc.2012.01.001

    Article  ADS  Google Scholar 

  59. V. Koval, I. Skorvanek, G. Viola, M. Zhang, C. Jia, H. Yan, Crystal chemistry and magnetic properties of Gd-substituted Aurivillius-type Bi5FeTi3O15 ceramics. J. Phys. Chem. C 122, 15733–15743 (2018). https://doi.org/10.1021/acs.jpcc.8b03801

    Article  Google Scholar 

  60. G.Z. Liu, C. Wang, H.S. Gu, H. Bin Lu, Raman scattering study of La-doped SrBi2Nb2O9 ceramics. J. Phys. D. Appl. Phys. 40, 7817–7820 (2007). https://doi.org/10.1088/0022-3727/40/24/034

    Article  ADS  Google Scholar 

  61. Q. Yafeng, W. Xiaojuan, Z. Jun, M. Xiangy, C. Xiaobing, Microstructure of Bi3xNdxTiNbO9 bismuth layer-structured ceramics. J. Rare Earths 25, 240–243 (2007). https://doi.org/10.1016/S1002-0721(07)60479-7

    Article  Google Scholar 

  62. C.M. Raghavan, J.W. Kim, J.Y. Choi, J.W. Kim, S.S. Kim, Effects of donor W6+-ion doping on the microstructural and multiferroic properties of Aurivillius Bi7Fe3Ti3O21 thin film. Appl. Surf. Sci. 346, 201–206 (2015). https://doi.org/10.1016/j.apsusc.2015.04.020

    Article  ADS  Google Scholar 

  63. C. Lavado, M.G. Stachiotti, Fe3+/Nb5+ co-doping effects on the properties of Aurivillius Bi4Ti3O12 ceramics. J. Alloys Compd. 731, 914–919 (2018). https://doi.org/10.1016/j.jallcom.2017.10.112

    Article  Google Scholar 

  64. J.A. Dias, R.E.S. Bretas, L.M.S. Marcondes, M.R. Morelli, Optical and dielectric properties of Nd and Sm-doped Bi5Ti3FeO15. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01363-4

    Article  Google Scholar 

  65. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley-IEEE Press, New Jersey, 2010), pp. 152–153

    Google Scholar 

  66. J. Liu, W. Bai, J. Yang, W. Xu, Y. Zhang, T. Lin, X. Meng, C.G. Duan, X. Tang, J. Chu, The Cr-substitution concentration dependence of the structural, electric and magnetic behaviors for Aurivillius Bi5Ti3FeO15 multiferroic ceramics. J. Appl. Phys. 114, 0–7 (2013). https://doi.org/10.1063/1.4849055

    Article  Google Scholar 

  67. K. Tang, W. Bai, J. Liu, J. Yang, Y. Zhang, C.G. Duan, X. Tang, J. Chu, The effect of Mn doping contents on the structural, dielectric and magnetic properties of multiferroic Bi5Ti3FeO15 Aurivillius ceramics. Ceram. Int. 41, S185–S190 (2015). https://doi.org/10.1016/j.ceramint.2015.03.233

    Article  Google Scholar 

  68. V.A. Khomchenko, G.N. Kakazei, Y.G. Pogorelov, J.P. Araujo, M.V. Bushinsky, D.A. Kiselev, A.L. Kholkin, J.A. Paixão, Effect of Gd substitution on ferroelectric and magnetic properties of Bi4Ti3O12. Mater. Lett. 64, 1066–1068 (2010). https://doi.org/10.1016/j.matlet.2010.02.016

    Article  Google Scholar 

  69. Y. Qiu, S. Zhao, Z. Wang, Magnetoelectric effect of Dy doped Bi5Ti3FeO15 films prepared by sol-gel method. Mater. Lett. 170, 89–92 (2016). https://doi.org/10.1016/j.matlet.2016.02.011

    Article  Google Scholar 

  70. X.Z. Zuo, J. Yang, B. Yuan, D.P. Song, X.W. Tang, K.J. Zhang, X.B. Zhu, W.H. Song, J.M. Dai, Y.P. Sun, Enhanced multiferroic properties of Aurivillius Bi6Fe1.4Co0.6Ti3O18 thin films by magnetic field annealing. Appl. Phys. Lett. 107, 222901 (2015). https://doi.org/10.1063/1.4937001

    Article  ADS  Google Scholar 

  71. Z. Yu, B. Yu, Y. Liu, P. Zhou, J. Jiang, K. Liang, Y. Lu, H. Sun, X. Chen, Z. Ma, T. Zhang, C. Huang, Y. Qi, Enhancement of multiferroic properties of Aurivillius Bi5Ti3FeO15 ceramics by Co doping. Ceram. Int. 43, 14996–15001 (2017). https://doi.org/10.1016/j.ceramint.2017.08.022

    Article  Google Scholar 

  72. V.A. Khomchenko, V.V. Shvartsman, P. Borisov, W. Kleemann, D.A. Kiselev, I.K. Bdikin, J.M. Vieira, A.L. Kholkin, Crystal structure and magnetic properties of Bi0.8(Gd1−xBax)0.2FeO3 (x = 0, 0.5, 1) multiferroics. J Phys. D Appl. Phys. 42(4), 045418 (2009). https://doi.org/10.1088/0022-3727/42/4/045418

    Article  ADS  Google Scholar 

  73. M. Siddique, E. Ahmed, N.M. Butt, Particle size effect on Mossbauer parameters in γ-Fe2O3 nanoparticles. Phys. B 405, 3964–3967 (2010). https://doi.org/10.1016/j.physb.2010.06.039

    Article  ADS  Google Scholar 

  74. V.S. Puli, S. Adireddy, C.V. Ramana, Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite. J. Alloy. Compd. 644, 470–475 (2015). https://doi.org/10.1016/j.jallcom.2015.05.031

    Article  Google Scholar 

  75. R.A. Pawar, S.M. Patange, A.R. Shitre, S.K. Gore, S.S. Jadhav, S.E. Shirsath, Crystal chemistry and single-phase synthesis of Gd3+ substituted Co–Zn ferrite nanoparticles for enhanced magnetic properties. RSC Adv. (2018). https://doi.org/10.1039/c8ra04282a

    Article  Google Scholar 

  76. B. Manoun, S. Benmokhtar, L. Bih, M. Azrour, A. Ezzahi, A. Ider, M. Azdouz, H. Annersten, P. Lazor, Synthesis, structure, and high temperature Mössbauer and Raman spectroscopy studies of Ba1.6Sr1.4Fe2WO9 double perovskite. J. Alloys Compd. 509, 66–71 (2011). https://doi.org/10.1016/j.jallcom.2010.08.082

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the Brazilian agencies for scientific and technological development CNPq (408790/2016-4 and 310364/2018-3), CAPES (Finance Code 001), FAPEMA (002866/2018) and Funcap (PNE-0112-00048.01.00/16 and PRONEX PR2-0101-00006.01.00/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. A. Fechine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, P.H.T., Silva, M.A.S., da Silva, R.B. et al. Effects of the Bi3+ substitution on the structural, vibrational, and magnetic properties of bismuth layer-structured ferroelectrics. Appl. Phys. A 126, 653 (2020). https://doi.org/10.1007/s00339-020-03858-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03858-y

Keywords

Navigation