Skip to main content
Log in

Property of Nafion-ionic polymer-metal composites based on Mori–Tanaka methodology and gradient mechanics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ionic polymer-metal composite (IPMC) actuators are a class of electroactive polymer composites that exhibit some interesting electromechanical characteristics such as low voltage actuation, large displacements, and benefit from low density and elastic modulus. Elastic modulus and surface resistance are basic properties of IPMCs that play a role in almost all practical applications of these materials. The prediction of the elastic modulus and surface resistance is of extreme importance to better grasp the mechanical behavior of IPMCs and to evaluate the success of the design. This paper has proposed a theoretical framework for predicting the elastic modulus and surface resistance of copper electrodes IPMCs. A five layers analytical assemblage model is introduced for the IPMCs relied upon improved classical lamination theory. The depositional metallic atoms were used as the exterior layer, the ionic polymer was used as the middle layer, and the material between the two layers was a gradient layer. Based on Mori–Tanaka methodology and gradient mechanics, the overall elastic properties of composites are obtained and lie between those obtained from the experiment. The prediction showed a good agreement with the experimental elastic modulus values with a maximum deviation of less than 10%. The overall results have provided useful insight into the elastic modulus and surface resistance effects to the properties of the IPMC. This would open further opportunities toward the higher application of IPMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Tamagawa, K. Okada, T. Mulembo, M. Sasaki, K. Naito, G. Nagai, T. Nitta, K.C. Yew, K. Ikeda, Simultaneous enhancement of bending and blocking force of an ionic polymer-metal composite (IPMC) by the active use of its material characteristics change. Actuators 8, 29 (2019)

    Article  Google Scholar 

  2. L. Yang, D. Zhang, X. Zhang, A. Tian, X. Wang, Models of displacement and blocking force of ionic-polymer metal composites based on actuation mechanism. Appl. Phys. A 126, 365 (2020)

    Article  ADS  Google Scholar 

  3. A. Khan, R.K. Inamuddin, M. Jain, A.M.Asiri Luqman, Development of sulfonated poly(vinyl alcohol)/aluminium oxide/graphene based ionic polymer-metal composite (IPMC) actuator. Sensor. Actuat. A Phys. 280, 114–124 (2018)

    Article  Google Scholar 

  4. L. Yang, D.S. Zhang, X.N. Zhang, A.F. Tian, Fabrication and actuation of Cu-ionic polymer metal composite. Polymers 12, 460 (2020)

    Article  Google Scholar 

  5. Z. Hojat, N. Naghavi, B. Hasan, A combined fuzzy logic and artificial neural network approach for non-linear identification of IPMC actuators with hysteresis modification. Expert Syst. 35, e12283 (2018)

    Article  Google Scholar 

  6. H.R. Cheong, N.T. Nguyen, M.K. Khaw, B.Y. Teoh, P.S. Chee, Wirelessly activated device with an integrated ionic polymer metal composite(IPMC) cantilever valve for targeted drug delivery. Lab Chip 18, 3207–3215 (2018)

    Article  Google Scholar 

  7. L. Yang, D. Zhang, X. Zhang, A. Tian, Prediction of the actuation property of Cu ionic polymer–metal composites based on backpropagation neural networks. ACS Omega 5, 4067–4074 (2020)

    Article  Google Scholar 

  8. E. Esmaeli, M. Ganjian, H. Rastegar, M. Kolahdouz, Z. Kolahdouz, G.Q. Zhang, Humidity sensor based on the ionic polymer metal composite. Sensor Actuator B Chem. 247, 498–504 (2017)

    Article  Google Scholar 

  9. S. Budhe, S. de Barros, M.D. Banea, Theoretical assessment of the elastic modulus of natural fiber-based intra-ply hybrid composites. J. Braz. Soc. Mech. Sci. 41, 263 (2019)

    Article  Google Scholar 

  10. K.S. Ahmed, S. Vijayarangan, Elastic property evaluation of jute-glass fiber hybrid composite using experimental and CLT approach. Indian J. Eng. Mater. Sci. 13, 435–442 (2006)

    Google Scholar 

  11. N. Phan-Thien, D.C. Pham, Differential multiphase models for polydispersed spheroidal inclusions: thermal conductivity and effective viscosity. Int. J. Eng. Sci. 38, 73–88 (2000)

    Article  Google Scholar 

  12. S. Giordano, Nonlinear effective behavior of a dispersion of randomly oriented coated ellipsoids with arbitrary temporal dispersion. Int. J. Eng. Sci. 98, 14–35 (2016)

    Article  MathSciNet  Google Scholar 

  13. W.X. Xu, D. Zhang, P. Lan, Y. Jiao, Multiple-inclusion model for the transport properties of porous composites considering coupled effects of pores and interphase around spheroidal particles. Int. J. Mech. Sci. 150, 610–616 (2019)

    Article  Google Scholar 

  14. W.X. Xu, M.K. Jia, Z.G. Zhu, M. Liu, D. Lei, X.F. Gou, N-phase micromechanical framework for the conductivity and elastic modulus of particulate composites: design to microencapsulated phase change materials (mpcms)-cementitious composites. Mater. Des. 145, 108–115 (2018)

    Article  Google Scholar 

  15. E. García-Macías, R. Castro-Triguero, A. Sáez, F. Ubertini, 3D mixed micromechanics-FEM modelling of piezoresistive carbon nanotube smart concrete. Comput. Methods Appl. Meth. Eng. 340, 396–423 (2018)

    Article  ADS  Google Scholar 

  16. T. Kenta, J.F. Li, S. Yokoyama, R. Watanabe, A. Almajid, M. Taya, Design and fabrication of functionally graded PZT-Pt piezoelectric bimorph actuator. Sci. Tech. Adv. Mater. 3, 217–224 (2002)

    Article  Google Scholar 

  17. S.J. Kim, S.M. Kim, K.J. Kim, Y.H. Kim, An electrode model for ionic polymer-metal composites. Smart Mater. Struct. 16, 2286–2295 (2007)

    Article  ADS  Google Scholar 

  18. H.G. Liu, K. Xiong, M. Wang, A gradient model for Young’s modulus and Surface electrode resistance of ionic polymer-metal composite. Acta Mech. Solida Sin. 32, 754–766 (2019)

    Article  Google Scholar 

  19. Y. Cha, M. Aureli, M. Porfiri, A physics-based model of the electrical impedance of ionic polymer metal composites. J. Appl. Phys. 111, 124901 (2012)

    Article  ADS  Google Scholar 

  20. Y. Wang, Z. Zhu, H. Chen, B. Luo, L. Chang, Y. Wang, Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators. Smart Mater. Struct. 23, 125015 (2014)

    Article  ADS  Google Scholar 

  21. A. Kloke, F. Stetten, R. Zengerle, S. Kerzenmacher, Strategies for the fabrication of porous platinum electrodes. Adv. Mater. 23, 4976–5008 (2011)

    Article  Google Scholar 

  22. R. Tiwari, K.J. Kim, Effect of metal diffusion on mechanoelectric property of ionic polymer-metal composite. Appl. Phys. Lett. 97, 244104 (2010)

    Article  ADS  Google Scholar 

  23. W.X. Xu, Y. Jiao, Theoretical framework for percolation threshold, tortuosity and transport properties of porous materials containing 3d non-spherical pores. Int. J. Eng. Sci. 134, 31–46 (2019)

    Article  MathSciNet  Google Scholar 

  24. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Pabst, E. Gregorová, Young’s modulus of isotropic porous materials with spheroidal pores. J. Eur. Ceram. Soc. 34, 3195–3207 (2014)

    Article  Google Scholar 

  26. J.Y. Li, S. Nemat-Nasser, Micromechanical analysis of ionic clustering in Nafion perfluorinated membrane. Mech. Mater. 32, 303–314 (2000)

    Article  Google Scholar 

  27. W. Pabst, E. Gregorová, Effective elastic properties of alumina-zirconia composite ceramics-part II: micromechanical modeling. Ceram. Silik. 48, 14–23 (2004)

    Google Scholar 

  28. W. Xu, Y. Wu, X. Gou, Effective elastic moduli of nonspherical particle-reinforced composites with inhomogeneous interphase considering graded evolutions of elastic modulus and porosity. Comput. Methods Appl. Mech. Eng. 350, 535–553 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. W. Liu, L. Bian, Influences of inclusions and corresponding interphase on elastic properties of composites. Arch. Appl. Mech. 88, 1507–1524 (2018)

    Article  ADS  Google Scholar 

  30. H. Tan, Y. Huang, C. Liu, G. Ravichandran, H.M. Inglis, P.H. Geubelle, The uniaxial tension of particulate composite materials with nonlinear interface debonding. Int. J. Solids Struct. 44, 1809–1822 (2007)

    Article  Google Scholar 

  31. W. Pabst, E. Gregorová, Effective elastic properties of alumina-zirconia composite ceramics-part I: rational continuum theory of linear elasticity. Ceram. Silik. 47, 1–7 (2003)

    Google Scholar 

  32. P. Huang, Principles of powder metallurgy(second edition) (Metallurgical Industry Press, Beijing, 1997), pp. 391–392

    Google Scholar 

  33. M. Sabet, M. Salavati-Niasari, O. Amiri, Using different chemical methods for deposition of CdS on TiO2 surface and investigation of their influences on the dye-sensitized solar cell performance. Electrochim. Acta 117, 504–520 (2014)

    Article  Google Scholar 

  34. F. Mohandes, F. Davar, M. Salavati-Niasari, Magnesium oxide nanocrystals via thermal decomposition of magnesium oxalate. J. Phys. Chem. Solids 71, 1623–1628 (2010)

    Article  ADS  Google Scholar 

  35. M. Mousavi-Kamazani, Z. Zarghami, M. Salavati-Niasari, Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. J. Phys. Chem. C 120, 2096–2108 (2016)

    Article  Google Scholar 

  36. F. Davar, M. Salavati-Niasari, N. Mir, K. Saberyan, M. Monemzadeh, E. Ahmadi, Thermal decomposition route for synthesis of Mn3O4 nanoparticles in presence of a novel precursor. Polyhedron 29, 1747–1753 (2010)

    Article  Google Scholar 

  37. M. Salavati-Niasari, M. Shaterian, M.R. Ganjali, P. Norouzi, Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of N, N′-bis(salicylidene)phenylene-1,3-diamine) nanocomposite materials (HGNM). J. Mol. Catal. A: Chem. 261, 147–155 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Science and Technology Program of Shaanxi Province, China (2016KTZDGY-02-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsheng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, D., Zhang, X. et al. Property of Nafion-ionic polymer-metal composites based on Mori–Tanaka methodology and gradient mechanics. Appl. Phys. A 126, 633 (2020). https://doi.org/10.1007/s00339-020-03807-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03807-9

Keywords

Navigation