Skip to main content

Advertisement

Log in

Influence of alloying ratio in tailoring the structural and optical properties of (1 − x)CdS–xCuS nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocomposites of CdS@CuS heterostructures were synthesized applying a simple chemical procedure. The structural characteristics of resulting nanocomposites (1 − x)CdS–xCuS (x = 0, 0.3, 0.5, 0.7 and 1) samples were inferred applying synchrotron X-ray diffraction (XRD), Fourier transform infrared (FTIR) and high-resolution transmission electron microscope techniques. The optical characteristics were deduced from the UV–Vis and photoluminescence (PL) spectroscopy techniques. XRD phase identification revealed CuS having the hexagonal phase P 63/m m c, while CdS in two phases: cubic major phase \( F \bar{4} 3 m \) and hexagonal minor phase P 63 m c. The phase percentage, the crystallite size, the lattice parameters and the ions coordinates of each phase are traced as a function of the alloying parameter (x). FTIR analysis revealed a change in the transmittance intensity of the vibration bands upon changing CdS/CuS ration in the nanocomposites matrix. UV–Vis absorption spectra were affected greatly by the ratio of CdS to CuS in the different composites. All composites materials exhibited two energy gaps lower than parent compounds. The PL emission of CdS sample is broader than CuS sample. The PL spectra of CdS@CuS nanocomposites samples revealed a broad emission with a redshift depending on the ratio between CdS and CuS in the matrix. All samples emitted UV, violet and blue colors, while CuS sample reveals UV and violet colors. The obtained properties of CdS@CuS nanocomposites, by changing the composition ratio, make them good candidates for enhanced visible light photocatalytic activity and solar energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.-X. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y.L. Men, F.F. Cao, S.H. Yu, J.B. Goodenough, J. Am. Chem. Soc. 139, 4123 (2017)

    Article  Google Scholar 

  2. T. Jiang, Y. Wang, D. Meng, X. Wu, J. Wang, J. Chen, Appl. Surf. Sci. 311, 602 (2014)

    Article  ADS  Google Scholar 

  3. Y. Wang, T. Jiang, D. Meng, J. Yang, Y. Li, Q. Ma, J. Han, Appl. Surf. Sci. 317, 414 (2014)

    Article  ADS  Google Scholar 

  4. Z.K. Heiba, M.B. Mohamed, N.Y. Mostafa, Appl. Phys. A 125(2), 132 (2019)

    Article  ADS  Google Scholar 

  5. K.P. Acharya, Photocurrent Spectroscopy of CdS/Plastic, CdS/Glass, and ZnTe/GaAs Hetero-pairs Formed with Pulsed-Laser Deposition, Ph.D. Thesis, Bowling Green State University, 2009

  6. S.K. Apte, S.N. Garaje, G.P. Mane, A. Vinu, S.D. Naik, D.P. Amalnerkar, B.B. Kale, Small 7, 957 (2011)

    Article  Google Scholar 

  7. L. Cheng, Q. Xiang, Y. Liao, H. Zhang, Energy Environ. Sci. 11, 1362 (2018)

    Article  Google Scholar 

  8. N. Jiang, Z. Xiu, Z. Xie, H. Li, G. Zhao, W. Wang, Y. Wu, X. Hao, New J. Chem. 38, 4312 (2014)

    Article  Google Scholar 

  9. Y.-X. Pan, J.B. Peng, S. Xin, Y. You, Y.L. Men, F. Zhang, M.Y. Duan, Y. Cui, Z.Q. Sun, J. Song, A.C.S. Sustain, Chem. Eng. 5, 5449 (2017)

    Google Scholar 

  10. Y. Shi, H. Li, L. Wang, W. Shen, H. Chen, A.C.S. Appl, Mater. Interfaces 4, 4800 (2012)

    Article  Google Scholar 

  11. I. Ibrahim, H.N. Lim, O.K. Abou-Zied, N.M. Huang, P. Estrela, A. Pandikumar, J. Phys. Chem. C 120, 22202 (2016)

    Article  Google Scholar 

  12. Q. Wang, Y.F. Ruan, W.W. Zhao, P. Lin, J.J. Xu, H.Y. Chen, Anal. Chem. 90, 3759 (2018)

    Article  Google Scholar 

  13. Z.K. Heiba, M.B. Mohamed, Appl. Phys. A 124(6), 446 (2018)

    Article  ADS  Google Scholar 

  14. S.K. Han, C. Gu, S. Zhao, S. Xu, M. Gong, Z. Li, S.H. Yu, J. Am. Chem. Soc. 138, 12913 (2016)

    Article  Google Scholar 

  15. H. Dang, Z. Cheng, W. Yang, W. Chen, W. Huang, B. Li, Z. Shi, Y. Qiu, X. Dong, H. Fan, J. Alloys Compd. 709, 422 (2017)

    Article  Google Scholar 

  16. H. Zhu, T. Lian, Energy Environ. Sci. 5, 9406 (2012)

    Article  Google Scholar 

  17. X. Deng, C. Wang, H. Yang, M. Shao, S. Zhang, X. Wang, M. Ding, J. Huang, X. Xu, Sci. Rep. 7, 3877 (2017)

    Article  ADS  Google Scholar 

  18. X. Yang, G. Lu, B. Wang, T. Wang, Y. Wang, RSC Adv. 9, 25142 (2019)

    Article  Google Scholar 

  19. A. Malathi, J. Madhavan, J. Nano Res. 48, 49 (2016)

    Article  Google Scholar 

  20. A. Sjadhav, V.M. Bhuse, Bull. Mater. Sci. 42, 125 (2019)

    Article  Google Scholar 

  21. I. Vamvasakis, A. Trapali, J. Miao, B. Liu, G.S. Armatas, Inorg. Chem. Front. 4, 433 (2017)

    Article  Google Scholar 

  22. Z.K. Heiba, M.B. Mohamed, J. Inorg. Organomet. Polym Mater. 30(3), 879 (2020)

    Article  Google Scholar 

  23. Z.K. Heiba, M.B. Mohamed, J.R. Plaisier, A.M. El-naggar, A.A. Albassam, Chin. J. Phys. (2020). https://doi.org/10.1016/j.cjph.2020.04.010

    Article  Google Scholar 

  24. M.B. Mohamed, Z.K. Heiba, N.G. Imam, J. Mol. Struct. 1163, 442 (2018)

    Article  ADS  Google Scholar 

  25. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Mol. Struct. 1136, 321 (2017)

    Article  ADS  Google Scholar 

  26. Z.K. Heiba, M.B. Mohamed, N.G. Imam, Ceram. Int. 41(10), 12930 (2015)

    Article  Google Scholar 

  27. Z.K. Heiba, N.G. Imam, M.B. Mohamed, Mater. Sci. Semicond. Process. 34, 39 (2015)

    Article  Google Scholar 

  28. M.B. Mohamed, Int. J. Appl. Ceram. Technol. 17(2), 823 (2020)

    Article  Google Scholar 

  29. L. Lutterotti, Nucl. Inst. Methods Phys. Res. B. 268, 334 (2010)

    Article  ADS  Google Scholar 

  30. J. Rodríguez-Carvajal, Phys. B (Amst. Neth.) 192, 55 (1993)

    Article  ADS  Google Scholar 

  31. T.P. Martin, H. Schaber, Spectrochem. Acta A 38, 655 (1982)

    Article  ADS  Google Scholar 

  32. Y. Wang, L. Zhang, H. Jiu, N. Lia, Y. Sun, Appl. Surf. Sci. 303, 54 (2014)

    Article  ADS  Google Scholar 

  33. T.P. Martin, H. Schaber, Spectmchim. Acta A 38(6), 655 (1982)

    Article  ADS  Google Scholar 

  34. M.N. Kalasad, M.K. Rabinal, B.G. Mulimani, G.S. Avadhani, Semicond. Sci. Technol. 23(045009), 1 (2008)

    Google Scholar 

  35. G.T. Rao, R.J. Stella, B. Babu, K. Ravindranadh, C.V. Reddy, J. Shim, R.V.S.S.N. Ravikumar, Mater. Sci. Eng., B 201, 72 (2015)

    Article  Google Scholar 

  36. R. Devi, P. Purkayastha, P.K. Kalita, B.K. Sarma, Bull. Mater. Sci. 30(2), 123 (2007)

    Article  Google Scholar 

  37. R. Seoudi, A.B. El-Bailly, W. Eisa, A.A. Shabaka, S.I. Soliman, R.K. Abd El Hamid, R.A. Ramadan, J. Appl. Sci. Res. 8(2), 658 (2012)

    Google Scholar 

  38. S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25, 10397 (2009)

    Article  Google Scholar 

  39. B.M. Palve, S.R. Jadkar, H.M. Pathan, J. Mater. Sci.: Mater. Electron. 27, 11783 (2016)

    Google Scholar 

  40. C. Feng, X. Meng, X. Song, X. Feng, Y. Zhao, G. Liu, RSC Adv. 6, 110266–110273 (2016)

    Article  Google Scholar 

  41. N. Sreelekha, K. Subramanyam, D.A. Reddy, G. Murali, K.R. Varma, R.P. Vijayalakshmi, Solid State Sci. 62, 71 (2016)

    Article  ADS  Google Scholar 

  42. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, London, 1974)

    Book  Google Scholar 

  43. A.K. Sahoo, S.K. Srivastava, J. Nanopart. Res. 15, 1591 (2013)

    Article  ADS  Google Scholar 

  44. H. Hu, J. Wang, C. Deng, C. Niu, H. Le, J. Mater. Sci. 53(20), 14250 (2018)

    Article  ADS  Google Scholar 

  45. X. Li, Y. Li, F. Xie, W. Li, W. Li, M. Chen, Y. Zhao, RSC Adv. 5, 84465 (2015)

    Article  Google Scholar 

  46. M. Mahanthappa, N. Kottam, S. Yellapp, Appl. Surf. Sci. 475, 828 (2019)

    Article  ADS  Google Scholar 

  47. F. Cheng, Q. Xiang, RSC Adv. 6, 76269 (2016)

    Article  Google Scholar 

  48. J. Zhang, F. Jiang, Phys. Lett. A 373, 3888 (2009)

    Article  ADS  Google Scholar 

  49. M. Shkir, Z.R. Khan, M. Anis, S.S. Shaikh, S. AlFaify, Chin. J. Phys. 63, 51 (2020)

    Article  Google Scholar 

  50. Z.K. Heiba, M.B. Mohamed, N.G. Imam, J. Alloy. Compd. 618, 280 (2015)

    Article  Google Scholar 

  51. V. Krishnakumar, R. Ranjith, J. Jayaprakash, S. Boobas, J. Venkatesan, Mater. Sci. Mater. Electron. 28(18), 13990 (2017)

    Article  Google Scholar 

  52. Y. Lie, W.K. Chim, H.P. Sun, G. Wilde, Appl. Phys. Lett. 86, 103106 (2005)

    Article  ADS  Google Scholar 

  53. J.E.B. Katari, V. Colvin, A.P. Alivisatos, Chem. Phys. 98, 4109 (1994)

    Article  Google Scholar 

  54. Y. Chen, Z. Qin, X. Wang, X. Guo, L. Guo, RSC Adv. 5, 18159 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deanship of Scientific Research, King Saud University, for funding through Vice Deanship of Scientific Research Chairs. The authors also would like to thank the MCX staff members for helping with the SR-XRPD measurements of the project No. 20190492 carried out at the MCX beam line of Elettra Synchrotron, Trieste, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bakr Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B., Abdellatief, M. et al. Influence of alloying ratio in tailoring the structural and optical properties of (1 − x)CdS–xCuS nanocomposite. Appl. Phys. A 126, 518 (2020). https://doi.org/10.1007/s00339-020-03700-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03700-5

Keywords

Navigation