Skip to main content
Log in

Statistical and fractal analysis of nitrogen ion implanted tantalum thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tantalum bulk has been implanted by nitrogen ions at an energy30 keV and at various doses of 1 × 1017, 3 × 1017, and 10 × 1017 ions/cm2. As a result, thin films are rough; their morphology and stochastic properties have been investigated. The monofractal analysis is done for unimplanted and implanted samples based on the statistical analysis conception. The correlation function and also the correlation length of the samples have been studied. Also, the power spectral density, the dimension of the fractal, the distribution of height, and the skewness and kurtosis (the higher-order moments) of the surface height have been investigated. The results show the deviation of height distribution from the gaussian one. The measurement of jagged and irregularity of samples have been investigated by calculating the roughness exponent and fractal dimensions. The rough samples which have been produced by ion bombardment have the self-affine fractal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.H. Ramezani, S. Hoseinzadeh, A. Bahari, J. Inorg. Organomet. Polym. Mater. 28, 847 (2018)

    Google Scholar 

  2. S. Hoseinzadeh, A.H. Ramezani, J. Nanoelectron. Optoelectron. 14, 1413 (2019)

    Google Scholar 

  3. A.H. Ramezani, S. Hoseinzadeh, Zh Ebrahiminejad, Mod. Phys. Lett. B (2020). https://doi.org/10.1142/S0217984920501638

    Article  Google Scholar 

  4. S. Hoseinzadeh, A.H. Ramezani, J. Nanostruct. 9, 276 (2019)

    Google Scholar 

  5. K. Alves de Souza, A. Robin, Mater. Chem. Phys. 103, 351 (2007)

    Google Scholar 

  6. A.N. Protsenko, Nucl. Instrum. Methods Phys. Res. Sect. B 82, 417 (1991)

    ADS  Google Scholar 

  7. M. Esmaeelpour, G. Kavei, Appl. Surf. Sci. 252, 6353 (2006)

    ADS  Google Scholar 

  8. S. Picard, J.B. Memet, R. Sabot, J.L. Grosseau, J.P. Riviere, R. Meilland, Mater. Sci. Eng. A 303, 163 (2001)

    Google Scholar 

  9. G.S. Chen, S.T. Chen, J. Appl. Phys. 87, 8473 (2000)

    ADS  Google Scholar 

  10. J. Chuang, M. Chen, Thin Solid Films 322, 213 (1998)

    ADS  Google Scholar 

  11. M. Stavrev, D. Fischer, C. Wenzel, K. Drescher, N. Mattern, Thin Solid Films 79, 307 (1997)

    Google Scholar 

  12. T. Gredig, E.A. Silverstein, M.P. Byrne, J. Phys. Conf. Ser. 417, 012069 (2013)

    Google Scholar 

  13. V.N. Bliznyuk, V.M. Burlakov, H.E. Assender, G.A.D. Briggs, Y. Tsukahara, Macromol. Symp. 167, 89 (2001)

    Google Scholar 

  14. A. Le Gal, L. Guy, G. Orange, Y. Bomal, M. Kluppel, Wear 264, 606 (2008)

    Google Scholar 

  15. D. Raoufi, F. Hosseinpanahi, Appl. Phys. 7, 21 (2013)

    Google Scholar 

  16. K. Ghosh, R.K. Pandey, Appl. Phys. A 125, 98 (2019)

    ADS  Google Scholar 

  17. K. Ghosh, R.K. Pandey, AIP Conf. Proc. 2115, 030280 (2019)

    Google Scholar 

  18. K. Ghosh, R.K. Pandey, Mater. Res. Express 6, 086454 (2019)

    ADS  Google Scholar 

  19. A.H. Ramezani, M.R. Hantehezadeh, M. Ghoranneviss, E. Darabi, Appl. Phys. A 122, 178 (2016)

    ADS  Google Scholar 

  20. A.L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, New York, 1995)

    MATH  Google Scholar 

  21. J.A. Ogilvy, J.R. Foster, J. Phys. D: Appl. Phys 22, 1243 (1989)

    ADS  Google Scholar 

  22. I. Simonovski, L. Cizelj, International Conference. Nuclear Energy for New Europe, 110.1 (2005)

  23. Y. Zhao, G.-C. Wang, T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications (Department of Physics, Applied Physics, and Astronomy Rensselaer Polytechnic Institute Troy, New York, 2001)

    Google Scholar 

  24. D. Raoufi, F. Hosseinpanahi, J. Theor. Appl. Phys. 7, 21 (2013)

    ADS  Google Scholar 

  25. W.-Z. Wang, H. Chen, Y.-Z. Hu, H. Wang, Tribol. Int 39, 522 (2006)

    Google Scholar 

  26. G. Palasanzas, J. Barnas, Phys. Rev. B 56, 7726 (1997)

    ADS  Google Scholar 

  27. G. Palasantzas, J. Barnasa, ThM De Hosson, J. Appl. Phys. 88, 927 (2000)

    ADS  Google Scholar 

  28. B.N.J. Persson, Tribol Lett 54, 99 (2014)

    Google Scholar 

  29. R.P. Yadav, T. Kumar, A.K. Mittal et al., Appl. Surf. Sci. 347, 706 (2015)

    ADS  Google Scholar 

  30. D. Dastan, Appl. Phys. A 123, 699 (2017)

    ADS  Google Scholar 

  31. S. Hoseinzadeh, R. Ghasemiasl, A. Bahari et al., J. Electron. Mater. 47, 3552 (2018)

    ADS  Google Scholar 

  32. S. Hoseinzadeh, R. Ghasemiasl, A. Bahari et al., J. Mater. Sci. Mater. Electron. 28, 14446 (2017)

    Google Scholar 

  33. J. Krim, I. Heyvaert, C. Van Haesendonck, Y. Bruynseraede, Phys. Rev. Lett. 70, 57 (1993)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. H. Ramezani or S. Hoseinzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, A.H., Hoseinzadeh, S. & Ebrahiminejad, Z. Statistical and fractal analysis of nitrogen ion implanted tantalum thin films. Appl. Phys. A 126, 481 (2020). https://doi.org/10.1007/s00339-020-03671-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03671-7

Keywords

Navigation