Skip to main content
Log in

Induced birefringence in glass: depletion and enhancement by orthogonal-polarized femtosecond pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We show spectacular and different effect of the sequential and simultaneous writing of two perpendicularly polarized ultrashort laser pulse trains on profile and magnitude of induced optical retardation inside fused silica glass. Clear birefringence was observed in the region exposed to linearly polarized pulse train radiation. It found out that the induced birefringence is erasable. It means that, when the sample is irradiated again with pulse train having perpendicular polarization, the induced birefringence is vanished and can be totally erased by optimizing the pulse energy. However, in a simultaneous writing approach, a contradictory result was observed. When the glass substrates were simultaneously (i.e. with an accuracy better than the pulse duration) exposed to two beams with perpendicular polarization the induced birefringence not only remained but also enhanced. Discussion and study on the results of interaction of polarized single ultrashort laser pulse and sequential laser beams (which spatially overlapped) having different polarizations and also change of energy ratio of simultaneously writing pulse trains helps us to analyze different results of the simultaneous interaction of two orthogonally polarized ultrashort laser pulse trains with transparent material. Our results provide pieces of evidence for further understanding the physical mechanism of creation of the birefringence using ultrashort laser pulses. Additionally, they provide the ability to manipulate the transient electron dynamics to control the profile and tailor of the induced birefringence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Kazansky, A. Cerkauskaite, M. Beresna, R. Drevinskas, A. Patel, J. Zhang, et al., Eternal 5D data storage via ultrafast-laser writing in glass, in SPIE Optoelectronics & Communications, 2016.

  2. L.A. Fernandes, J.R. Grenier, P.R. Herman, J.S. Aitchison, P.V. Marques, Femtosecond laser writing of waveguide retarders in fused silica for polarization control in optical circuits. Opt. Express 19, 18294–18301 (2011)

    Article  ADS  Google Scholar 

  3. L.P.R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A.V. Korovin et al., Tuning the structural properties of femtosecond-laser-induced nanogratings. Appl. Phys. A 100, 1–6 (2010)

    Article  ADS  Google Scholar 

  4. M. Beresna, M. Gecevičius, P.G. Kazansky, T. Gertus, Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98, 201101 (2011)

    Article  ADS  Google Scholar 

  5. W. Cai, A.R. Libertun, R. Piestun, Polarization selective computer-generated holograms realized in glass by femtosecond laser induced nanogratings. Opt. Express 14, 3785–3791 (2006)

    Article  ADS  Google Scholar 

  6. G. Cheng, K. Mishchik, C. Mauclair, E. Audouard, R. Stoian, Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass. Opt. Express 17, 9515–9525 (2009)

    Article  ADS  Google Scholar 

  7. E. Bricchi, J.D. Mills, P.G. Kazansky, B.G. Klappauf, J.J. Baumberg, Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining. Opt. Lett. 27, 2200–2202 (2002)

    Article  ADS  Google Scholar 

  8. K. Sugioka, Y. Cheng, Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications (Springer, Berlin, 2013)

    Google Scholar 

  9. S. Najafi, A.S. Arabanian, R. Massudi, Comprehensive modeling of structural modification induced by a femtosecond laser pulse inside fused silica glass. J. Phys. D Appl. Phys. 49, 255101 (2016)

    Article  ADS  Google Scholar 

  10. L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses. Opt. Commun. 171, 279–284 (1999)

    Article  ADS  Google Scholar 

  11. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  12. R. Buschlinger, S. Nolte, U. Peschel, Self-organized pattern formation in laser-induced multiphoton ionization. Phys. Rev. B 89, 184306 (2014)

    Article  ADS  Google Scholar 

  13. A. Rudenko, J.-P. Colombier, T.E. Itina, From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Phys. Rev. B 93, 075427 (2016)

    Article  ADS  Google Scholar 

  14. Y. Shimotsuma, T. Asai, M. Sakakura, K. Miura, Femtosecond-laser nanostructuring in glass. J. Laser Micro Nanoeng. 9, 31 (2014)

    Article  Google Scholar 

  15. R. Taylor, C. Hnatovsky, E. Simova, P. Rajeev, D. Rayner, P. Corkum, Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass. Opt. Lett. 32, 2888–2890 (2007)

    Article  ADS  Google Scholar 

  16. F. Zimmermann, A. Plech, S. Richter, A. Tünnermann, and S. Nolte, Erasure and formation of femtosecond laser-induced nanostructures, in SPIE LASE, 2015, pp. 935512–935512-6.

  17. Y. Shimotsuma, M. Sakakura, P.G. Kazansky, M. Beresna, J. Qiu, K. Miura et al., Ultrafast manipulation of self-assembled form birefringence in glass. Adv. Mater. 22, 4039–4043 (2010)

    Article  Google Scholar 

  18. A.S. Arabanian, S. Najafi, A. Ajami, W. Husinsky, R. Massudi, Birefringence profile adjustment by spatial overlap of nanogratings induced by ultra-short laser pulses inside fused silica. Appl. Phys. A 124, 172 (2018)

    Article  ADS  Google Scholar 

  19. E. Bricchi, B.G. Klappauf, P.G. Kazansky, Form birefringence and negative index change created by femtosecond direct writing in transparent materials. Opt. Lett. 29, 119–121 (2004)

    Article  ADS  Google Scholar 

  20. J.D. Mills, P.G. Kazansky, E. Bricchi, J.J. Baumberg, Embedded anisotropic microreflectors by femtosecond-laser nanomachining. Appl. Phys. Lett. 81, 196–198 (2002)

    Article  ADS  Google Scholar 

  21. S. Najafi, R. Massudi, A. Ajami, C.S. Nathala, W. Husinsky, A.S. Arabanian, Study on contribution of the asymmetric stress to the birefringence induced by an ultrashort single laser pulse inside fused silica glass. J. Appl. Phys. 120, 153102 (2016)

    Article  ADS  Google Scholar 

  22. V. Niziev, A. Nesterov, Influence of beam polarization on laser cutting efficiency. J. Phys. D Appl. Phys. 32, 1455 (1999)

    Article  ADS  Google Scholar 

  23. M. Gecevičius, M. Beresna, J. Zhang, W. Yang, H. Takebe, P.G. Kazansky, Extraordinary anisotropy of ultrafast laser writing in glass. Opt. Express 21, 3959–3968 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Iran National Science Foundation, INSF (Grant No. 95012078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Massudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, S., Arabanian, A.S., Massudi, R. et al. Induced birefringence in glass: depletion and enhancement by orthogonal-polarized femtosecond pulses. Appl. Phys. A 126, 411 (2020). https://doi.org/10.1007/s00339-020-03548-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03548-9

Keywords

Navigation