Skip to main content
Log in

Performance analysis of anomalous photocatalytic activity of Cr-doped TiO2 nanoparticles [Cr(x)TiO2(1−x)]

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the synthesis and characterisation of pristine and chromium (Cr) metal ion-doped titanium dioxide nanoparticles [Cr(x)TiO2(1−x)] to study the anomalous effect of Cr doping on the photocatalytic property of TiO2. The presence of dopants generates more number of recombination pairs and increases surface coverage sites which decreases photocatalytic activity. We study the structural morphology of the synthesised Cr(x)TiO2(1−x) samples using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy analysis. The effect of Cr3+ ions on the optical properties of TiO2 has been studied using various imaging and spectroscopic techniques. Further, the effect of doping of Cr on the photocatalytic activity of TiO2 has been analysed in detail. The concentration of Cr in TiO2 has been chosen as 0, 1, 5 and 10% by weight. It has been observed that the pristine TiO2 exhibits better photocatalytic activity as compared to Cr-doped TiO2 irrespective of the Cr concentration. This can be attributed to the fact that due to Cr doping in TiO2, the number of available adsorption sites for malachite green reduces which degrades its photocatalytic activity. It is also confirmed by photoluminescence (PL) and time-resolved photoluminescence spectroscopy. PL intensity increases, and lifetime decreases with increase in doping concentration. Radiative recombination of electron and hole pairs of Cr3+ in TiO2 degrades its photocatalytic activity. The degradation efficiency is found to be 96% in the case of pristine TiO2 which reduces to 12% when doped with x = 10% concentration of chromium. Therefore, it is observed that in comparison with Cr-doped TiO2, pristine TiO2 exhibits an improved photocatalytic activity which shows the anomalous effect of Cr doping on the photocatalytic property of TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.H. Mohamed, M. El-Hagary, S. Althoyaib, Appl. Phys. A 111(4), 1207 (2013)

    ADS  Google Scholar 

  2. N.H. Shamsudin, S. Shafie, M.Z.A. Ab Kadir, F. Ahmad, A.R. Sadrolhosseini, Y. Sulaiman, S.A.M. Chachuli, Optik 203, 163567 (2020)

    ADS  Google Scholar 

  3. S. Bishnoi, N. Lohia, D. Rehani, S. Mehra, R. Datt, G. Gupta, D. Haranath, S. Sharma, Optik 203, 164015 (2020)

    ADS  Google Scholar 

  4. S. Chackrabarti, R.A. Zargar, S. Joseph, M. Arora, A. Aziz, A.K. Hafiz, Optik 127(20), 9966 (2016)

    ADS  Google Scholar 

  5. S. Kumar, J. Kumar, S. Narayan Sharma, S. Srivastava, Optik 178, 411 (2019)

    ADS  Google Scholar 

  6. R.A. Zargar, S. Chackrabarti, S. Joseph, M.S. Khan, R. Husain, A.K. Hafiz, Optik 126(23), 4171 (2015)

    ADS  Google Scholar 

  7. S.Z. Kang, Z. Xu, Y. Song, J. Mu, J. Dispersion Sci. Technol. 27(6), 857 (2006)

    Google Scholar 

  8. F. Abbas, R. Bensaha, H. Taroré, Optik 180, 361 (2019)

    ADS  Google Scholar 

  9. J. Bansal, S.K. Swami, A. Singh, T. Sarao, V. Dutta, A.K. Hafiz, S.N. Sharma, J. Dispers. Sci. Technol. (2019). https://doi.org/10.1080/01932691.2019.1699427

    Article  Google Scholar 

  10. Y. Ishibai, T. Nishikawa, S. Miyagishi, J. Dispers. Sci. Technol. 27(8), 1093 (2006)

    Google Scholar 

  11. R.A. Zargar, M.A. Bhat, I.R. Parrey, M. Arora, J. Kumar, A.K. Hafiz, Optik 127(17), 6997 (2016)

    ADS  Google Scholar 

  12. K.B. Chaudhari, Y.N. Rane, D.A. Shende, N.M. Gosavi, S.R. Gosavi, Optik 193, 163006 (2019)

    ADS  Google Scholar 

  13. R. Renugadevi, T. Venkatachalam, R. Narayanasamy, S. Dinesh Kirupha, Optik 127(20), 10127 (2016)

    ADS  Google Scholar 

  14. Y. Chen, S. Zhang, Y. Yu, H. Wu, S. Wang, B. Zhu, W. Huang, S. Wu, J. Dispers. Sci. Technol. 29(2), 245 (2008)

    Google Scholar 

  15. C. Chen, H. Bai, S.-M. Chang, C. Chang, W. Den, J. Nanoparticle Res. 9(3), 365 (2007)

    ADS  Google Scholar 

  16. G.P. Patil, V.S. Bagal, S.R. Suryawanshi, D.J. Late, M.A. More, P.G. Chavan, Appl. Phys. A 122(5), 560 (2016)

    ADS  Google Scholar 

  17. H. Sharma, R. Singhal, V.V. Siva Kumar, K. Asokan, Appl. Phys. A 122(12), 1010 (2016)

    ADS  Google Scholar 

  18. S. Chackrabarti, R.A. Zargar, D. Ali, M. Arora, A. Aziz, A.K. Hafiz, Optik 127(5), 2911 (2016)

    ADS  Google Scholar 

  19. T. Raguram, K.S. Rajni, Appl. Phys. A 125(5), 288 (2019)

    ADS  Google Scholar 

  20. A. Iwan, B. Boharewicz, A. Hreniak, I. Tazbir, J. Chmielowiec, J. Mod. Opt. 61(21), 1767 (2014)

    ADS  Google Scholar 

  21. H. Gao, M. Cai, Y. Liao, J. Dispers. Sci. Technol. 40(10), 1469 (2019)

    Google Scholar 

  22. M.K. Singh, M.S. Mehata, Optik 193, 163011 (2019)

    ADS  Google Scholar 

  23. S. Kumar, T. Vats, S.N. Sharma, J. Kumar, Optik 171, 492 (2018)

    ADS  Google Scholar 

  24. Z. Xu, Y. Long, S.-Z. Kang, J. Mu, J. Dispersion Sci. Technol. 29(8), 1150 (2008)

    Google Scholar 

  25. X. Li, Z. Guo, T. He, Phys. Chem. Chem. Phys. 15(46), 20037 (2013)

    Google Scholar 

  26. J.-M. Herrmann, Catal. Today 53(1), 115 (1999)

    Google Scholar 

  27. J.-M. Herrmann, New J. Chem. 36(4), 883 (2012)

    Google Scholar 

  28. N. Bsiri, M.A. Zrir, M. Bouaicha, Optik 207, 163888 (2020). https://doi.org/10.1016/j.ijleo.2019.163888

    Article  ADS  Google Scholar 

  29. N.C. Horti, M.D. Kamatagi, N.R. Patil, S.K. Nataraj, M.S. Sannaikar, S.R. Inamdar, Optik 194, 163070 (2019)

    ADS  Google Scholar 

  30. S. Joseph, A.K. Hafiz, Optik 125(12), 2734 (2014)

    ADS  Google Scholar 

  31. S. Mathew, P. Ganguly, S. Rhatigan, V. Kumaravel, C. Byrne, S.J. Hinder, J. Bartlett, M. Nolan, S.C. Pillai, Applied Sciences 8(11), 2067 (2018)

    Google Scholar 

  32. J. Wang, L. Xiaonao, R. Li, P. Qiao, L. Xiao, J. Fan, Catal. Commun. 19, 96 (2012)

    Google Scholar 

  33. G. Nagaraj, Raj A. Dhayal, Irudayaraj A. Albert, R.L. Josephine, Optik 179, 889 (2019)

    ADS  Google Scholar 

  34. H. Attouche, S. Rahmane, S. Hettal, N. Kouidri, Optik 203, 163985 (2020)

    ADS  Google Scholar 

  35. L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, L. Fedorenko, V. Kshnyakin, J. Baran, J. Lumin. 166, 253 (2015)

    Google Scholar 

  36. A. Hajjaji, K. Trabelsi, A. Atyaoui, M. Gaidi, L. Bousselmi, B. Bessais, M.A. El Khakani, Nanoscale Res. Lett. 9, 543 (2014)

    Google Scholar 

  37. B. Choudhury, A. Choudhury, Mater. Chem. Phys. 132(2–3), 1112 (2012)

    Google Scholar 

  38. B. Choudhury, A. Choudhury, Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles. Mater. Sci. Eng., B 178, 794–800 (2013)

    Google Scholar 

  39. C.C. Vidyasagar, H.B. Muralidhara, Y.A. Naik, G. Hosamani, M.S. Ilango, Energy Environ. Focus 4(1), 54 (2015)

    Google Scholar 

  40. S. Paul, A. Choudhury, Appl. Nanosci. 4(7), 839 (2013)

    ADS  Google Scholar 

  41. X. Li, Z. Guo, T. He, Phys. Chem. Chem. Phys.: PCCP 15(46), 20037 (2013)

    Google Scholar 

  42. R.S. Dubey, S. Singh, Results in Physics 7, 1283 (2017)

    ADS  Google Scholar 

  43. M. Guli, M. Deng, T. Bimenyimana, Z. Hu, Appl. Phys. A 123(11), 675 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

Two of the authors, Rana Tabassum and Sanjay Kumar Swami, are grateful to Department of Science and Technology for Inspire faculty scheme. The author (SB) sincerely acknowledges the Council of Scientific and Industrial Research (CSIR), Government of India for providing Research Associate fellowship (#31/1(0494)/2018-EMR-1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Sharma or A. K. Hafiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, J., Tabassum, R., Swami, S.K. et al. Performance analysis of anomalous photocatalytic activity of Cr-doped TiO2 nanoparticles [Cr(x)TiO2(1−x)]. Appl. Phys. A 126, 363 (2020). https://doi.org/10.1007/s00339-020-03536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03536-z

Keywords

Navigation