Skip to main content
Log in

Structure and microwave dielectric properties of low-temperature sinterable A2.5VMoO8 (A = Mg, Zn) molybdovanadate ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A2.5VMoO8 (A = Mg, Zn) molybdovanadate ceramics have been prepared through conventional solid-state ceramic route. Phase purity of these ceramics was confirmed using powder X-ray diffraction studies. Co-existence of both MoO42− and VO43− tetrahedra in the unit cell of these molybdovanadates has been identified through laser Raman spectroscopy. Sintered A2.5VMoO8 (A = Mg, Zn) ceramics show homogenous and dense microstructure. Mg2.5VMoO8 ceramic has a dielectric constant (εr) of 8.8, unloaded quality factor of 4800 at 10.85 GHz and temperature coefficient of resonant frequency (τf) of -58 ppm/ ℃ whereas Zn2.5VMoO8 ceramic exhibits a dielectric constant of 11.5, unloaded quality factor of 2500 at 9.18 GHz and temperature coefficient of resonant frequency τf of 115 ppm/ ℃.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.T. Sebastian, R. Ubic, H. Jantunen, Microwave materials and applications, vol. 1 (Wiley, New Jersey, 2017)

    Google Scholar 

  2. A. Isapour, A. Kouki, IEEE-MTT 67, 868 (2019)

    Google Scholar 

  3. A. Raveendran, M.T. Sebastian, S. Raman, J. Elec, Mater 48, 2601 (2019)

    Google Scholar 

  4. I.M. Reaney, J. Am. Ceram. Soc. 89, 2063 (2006)

    Google Scholar 

  5. M.T. Sebastian, Dielectric Materials for wireless communication, 1st edn. (Elsevier, Amsterdam, 2008)

    Google Scholar 

  6. L. Golonka, P. Bembnowickz, D. Jurkow, K. Malecha, H. Roguszczak, R. Tadaszak, Opt. Appl. 41, 383 (2011)

    Google Scholar 

  7. Y. Imanka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology (Springer, Boston, 2005)

    Google Scholar 

  8. M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2008)

    Google Scholar 

  9. H. Ogawa, A. Kan, S. Ishihara, Y. Higashida, J. Eur. Ceram. Soc. 23, 2485 (2003)

    Google Scholar 

  10. Z. Fu, P. Liu, J. Ma, X. Chen, H. Zhang, Mat. Lett 164, 436 (2016)

    Google Scholar 

  11. N.J. VanDerLaag, M.D. Snel, P.C.M.M. Magusin, G. De With, J. Eur. Ceram. Soc. 24, 2417 (2004)

    Google Scholar 

  12. B. Liu, X.Q. Liu, X.M. Chen, J. Mater. Chem. C 4, 4684 (2016)

    Google Scholar 

  13. X. Lu, W. Bian, Y. Li, H. Zhu, J. Am. Ceram. Soc. 101, 1646 (2017)

    Google Scholar 

  14. Z.Y. Zou, Z.H. Chen, X.K. Lan, W.Z. Lu, B. Ullah, X.H. Wang, W. Lei, J. Eur. Ceram. Soc. 37, 3065 (2017)

    Google Scholar 

  15. P. Zhang, H. Xie, Y. Zhao, X. Zhao, M. Xiao, J. Alloy. Compd. 690, 688 (2017)

    Google Scholar 

  16. J. Li, B. Yao, D. Xu, Z. Huang, Z. Wang, X. Wu, C. Fan, J. Alloy. Compd. 663, 494 (2016)

    Google Scholar 

  17. H.L. Pan, M.T. Liu, M.F. Li, F. Ling, H.T. Wu, J. Mater. Sci. Mater. Electron. 29, 999 (2017)

    Google Scholar 

  18. Y. Zhang, Y. Chang, M. Xiang, S. Liu, H. Liu, Ceram. Int. 42, 3542 (2016)

    Google Scholar 

  19. R. Ubic, S. Letourneau, S. Thomas, G. Suboth, M.T. Sebastian, Chem. Mater. 22, 4572 (2010)

    Google Scholar 

  20. N.X. Wu, J.J. Bian, Int. J. Appl. Ceram. Technol. 8, 1494 (2011)

    Google Scholar 

  21. H. Li, Z. Huang, L. Cheng, S. Kong, S. Liu, Ceram. Int. 43, 4570 (2017)

    Google Scholar 

  22. J. Dhanya, E.K. Suresh, R. Naveenraj, R. Ratheesh, J. Electron. Mater. 48, 4010 (2019)

    ADS  Google Scholar 

  23. Z.H. Wang, C.L. Yuan, B.H. Zhu, Q. Feng, F. Liu, L. Miao, C.R. Zhou, G.H. Chen, J. Mater. Sci. Mater. Electron. 29, 1817 (2018)

    Google Scholar 

  24. J. Dhanya, P.V. Sarika, R. Naveenraj, E.K. Suresh, R. Ratheesh, Int. J. Appl. Ceram. Technol. 16, 1150 (2019)

    Google Scholar 

  25. E.K. Suresh, A.N. Unnimaya, A. Surjith, R. Ratheesh, Ceram. Int. 39, 3635 (2013)

    Google Scholar 

  26. L. Fang, Z. Wei, C. Su, F. Xiang, H. Zhang, Ceram. Int. 40, 16835 (2014)

    Google Scholar 

  27. A.N. Unnimaya, E.K. Suresh, J. Dhanya, R. Ratheesh, J. Mater. Sci. Mater. Electron. 25, 1127 (2014)

    Google Scholar 

  28. M.T. Sebastian, H. Wang, H. Jantunen, Curr. Opin. Solid State Mater. Sci. 20, 151 (2016)

    ADS  Google Scholar 

  29. R. Naveenraj, E.K. Suresh, J. Dhanya, R. Ratheesh, Eur. J. Inorg. Chem 2019, 946 (2019)

    Google Scholar 

  30. D. Zhou, C.A. Randall, H. Wang, L.X. Pang, X. Yao, J. Am. Ceram. Soc. 93, 2147 (2010)

    Google Scholar 

  31. D. Zhou, L.X. Pang, H. Wang, J. Guo, X. Yao, C.A. Randall, J. Mater. Chem. 21, 1842 (2011)

    Google Scholar 

  32. D. Zhou, L.X. Pang, J. Guo, H. Wang, X. Yao, C.A. Randall, Inorg. Chem. 50, 12733 (2011)

    Google Scholar 

  33. D. Zhou, L.X. Pang, W.G. Qu, C.A. Randall, J. Guo, Z.M. Qi, T. Shao, X. Yao, RSC Adv. 3, 5009 (2013)

    Google Scholar 

  34. D. Zhou, L.X. Pang, Z.M. Qi, Inorg. Chem. 53, 9222 (2014)

    Google Scholar 

  35. H. Xiang, C.C. Li, Y. Tang, L. Fang, J. Eur. Ceram. Soc. 37, 3959 (2017)

    Google Scholar 

  36. B.W. Hakki, P.D. Coleman, I.R.E. Trans, Mircrow. Theory Tech. 8, 402 (1960)

    Google Scholar 

  37. J. Mazierska, M.V. Jacob, A. Harring, J. Krupka, P. Barnwell, T. Sims, J. Eur. Ceram. Soc. 23, 2611 (2003)

    Google Scholar 

  38. V.G. Zubkov, I.A. Leonidov, K.R. Poeppelmeier, V.L. Kozhevnikov, J. Solid State Chem. 111, 197 (1994)

    ADS  Google Scholar 

  39. W.D. Harding, H.H. Kung, V.L. Kozhevnikov, K.R. Poeppelmeier, J. Catal. 144, 597 (1993)

    Google Scholar 

  40. M.M. Velichkova, R. Iordanova, Process. Appl. Ceram. 3, 181 (2009)

    Google Scholar 

  41. X. Wang, J.D. Pless, D.A. Vander Griend, P.C. Stair, K.R. Poeppelmeier, Z. Hu, J.D. Jorgensen, J. Alloy Compd. 379, 87 (2004)

    Google Scholar 

  42. J.D. Pless, H.S. Kim, J.P. Smit, X. Wang, P.C. Stair, K.R. Poeppelmeier, Inorg. Chem. 45, 514 (2006)

    Google Scholar 

  43. J.P. Smit, H.S. Kim, I. Saratovsky, K.B. Stark, G. Fitzgerald, G.W. Zajac, J.F. Gaillard, R. Poeppelmeier, P.C. Stair, Inorg. Chem. 46, 6556 (2007)

    Google Scholar 

  44. N. Weinstock, H. Schulze, Muler. J. Chem. Phys. 59, 5063 (1973)

    ADS  Google Scholar 

  45. V.N. Moiseenko, Y.I. Bogatirjov, A.M. Jeryemenko, S.V. Akimov, J. Raman Spectrosc. 31, 539 (2000)

    ADS  Google Scholar 

  46. J. Dhanya, E.K. Suresh, R. Naveenraj, R. Ratheesh, Ceram. Int. 44, 6699 (2018)

    Google Scholar 

  47. R.L. Frost, D.A. Henry, M.L. Weier, W. Martens, J. Raman Spectrosc. 37, 722 (2006)

    ADS  Google Scholar 

  48. R.L. Frost, S.J. Palmer, J. Cejka, J. Sejkora, J. Plasil, S. Bahfenne, E.C. Keeffe, J. Raman Spectrosc. 42, 1701 (2011)

    ADS  Google Scholar 

  49. D.J. Barber, K.M. Moulding, J. Zhou, J. Mater. Sci. 32, 1531 (1997)

    ADS  Google Scholar 

  50. S.J. Penn, N.M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, K. Schrapel, J. Am. Ceram. Soc. 80, 1885 (1997)

    Google Scholar 

  51. M.P. Mcneal, S.J. Jang, R. Newnham, J. Appl. Phys. 83, 3288 (1998)

    ADS  Google Scholar 

  52. C.L. Huang, K.H. Chiang, S.C. Chuang, Mater. Res. Bull. 39, 629 (2004)

    Google Scholar 

  53. J. Dhanya, A.V. Basiluddeen, R. Ratheesh, Scr. Mater. 132, 1 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. N. Raghu, Director, C-MET, Thrissur for extending the facilities to the work. The authors are also thankful to the Board of Research in Nuclear Sciences, Mumbai for financial support under Grant number 34/15/01/2014-BRNS/0906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ratheesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveenraj, R., Arun, N.S. & Ratheesh, R. Structure and microwave dielectric properties of low-temperature sinterable A2.5VMoO8 (A = Mg, Zn) molybdovanadate ceramics. Appl. Phys. A 126, 53 (2020). https://doi.org/10.1007/s00339-019-3232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3232-2

Navigation