Skip to main content
Log in

Colorimetric detection of cadmium ions using modified silver nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metal ion sensors are a significant and challenging area in the analytical sciences. In this study, the use of grape juice for bio-synthesizing of silver nanoparticles (AgNPs) and using it for simple and rapid colorimetric detection of Cd2+ ions is described. The as-prepared AgNPs were characterized by standard analytical techniques including UV–visible and FTIR spectroscopic methods and transmission electron microscopy (TEM). The plasmon resonance band of the silver nanoparticles was observed at 410 nm and it was found that its intensity is related to the grape juice concentration and pH. The TEM image showed the average size of 5–10 nm for AgNPs. The detection of Cd2+ ions was based on the changes of absorbance due to complex formation of the metal ion. The colorimetric detection of Cd2+ was led to a linear dynamic range from 0 to 150 µmol/L (r2 = 0.9993) and a low detection limit of 4.95 µmol/L for cadmium in aqueous solution. These results are close to or better than the previous reports. This bio-synthesized AgNPs can be used as simple alternative design for colorimetric sensing of Cd2+ in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Vanek, L. Boruvka, O. Drabek, M. Mihaljevic, M. Komarek, Mobility of lead, zinc and cadmium in alluvial soils heavily polluted by smelting industry. Plant Soil Environ. 51, 316–321 (2005)

    Article  Google Scholar 

  2. M.P. Waalkes, Cadmium carcinogenesis in review. J. Inorg. Biochem. 79, 241–244 (2000)

    Article  Google Scholar 

  3. S.J. Stohs, D. Bagchi, Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol. Med. 18, 321–336 (1995)

    Article  Google Scholar 

  4. J.P. Groten, P.J. Bladeren, Cadmium bioavailability and health risk in food. Trends Food Sci. Technol. 5, 50–55 (1994)

    Article  Google Scholar 

  5. World Halth Organization, Cadmium in drinking-water: background document for development of WHO guidelines for drinking-water quality (2003)

  6. M. Ghanei-Motlagh, M.A. Taher, Novel imprinted polymeric nanoparticles prepared by sol–gel technique for electrochemical detection of toxic cadmium(II) ions. Chem. Eng. J. 327, 135–141 (2017)

    Article  Google Scholar 

  7. A. Malekpour, S. Hajialigol, M.A. Taher, Study on solid-phase extraction and flame atomic absorption spectrometry for the selective determination of cadmium in water and plant samples with modified clinoptilolite. J. Hazard. Mater. 172, 229–233 (2009)

    Article  Google Scholar 

  8. D. Beauchemin, S.S. Berman, Determination of trace metals in reference water standards by inductively coupled plasma mass spectrometry with on-line preconcentration. Anal. Chem. 61, 1857–1862 (1989)

    Article  Google Scholar 

  9. W. Guo, S. Hu, Y. Xiao, H. Zhang, X. Xie, Direct determination of trace cadmium in environmental samples by dynamic reaction cell inductively coupled plasma mass spectrometry. Chemosphere 81, 1463–1468 (2010)

    Article  ADS  Google Scholar 

  10. A. Matsumoto, S. Osaki, T. Kobata, B. Hashimoto, H. Uchihara, T. Nakahara, Determination of cadmium by an improved double chamber electrothermal vaporization inductively coupled plasma atomic emission spectrometry. Microchem. J. 95, 85–89 (2010)

    Article  Google Scholar 

  11. C.R. Lan, Z.B. Alfassi, Direct determination of manganese in sea-water by electrothermal atomic absorption spectrometry with sodium hydroxide as chemical modifier for interference removal. Analyst 119, 1033–1035 (1994)

    Article  ADS  Google Scholar 

  12. S. Yunus, S. Charles, F. Dubois, E.V. Donckt, Simultaneous determination of cadmium (II) and zinc (II) by molecular fluorescence spectroscopy and multiple linear regression using an anthrylpentaazamacrocycle chemosensor. J. Fluoresc. 18, 499–506 (2008)

    Article  Google Scholar 

  13. M.G.A. Korn, G.L. dos Santos, S.M. Rosa, L.S.G. Teixeira, P.V. de Oliveira, Determination of cadmium and lead in cetacean Dolphinidae tissue from the coast of Bahia state in Brazil by GFAAS. Microchem. J. 96, 12–16 (2010)

    Article  Google Scholar 

  14. M.R. Awual, M. Khraisheh, N.H. Alharthi, M. Luqman, A. Islam, M.R. Karim, M.M. Rahman, M.A. Khaleque, Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials. Chem. Eng. J. (2018). https://doi.org/10.1016/j.cej.2018.02.116

    Article  Google Scholar 

  15. A.J. Nozik, Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett. 10, 2735–2741 (2010)

    Article  ADS  Google Scholar 

  16. N.L. Rosi, C.A. Mirkin, Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562 (2005)

    Article  Google Scholar 

  17. M.D. Malinsky, K.L. Kelly, G.C. Schatz, R.P.V. Duyne, Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123, 1471–1482 (2001)

    Article  Google Scholar 

  18. X. Xu, W.L. Daniel, W. Wei, C.A. Mirkin, Colorimetric Cu2+ detection using DNA modified gold nanoparticle aggregates as probes and click chemistry. Small 6, 623–626 (2010)

    Article  Google Scholar 

  19. X. Zhang, R. Kong, Y. Lu, Metal ion sensors based on DNAzymes and related DNA molecules. Annu. Rev. Anal. Chem. 4, 105–128 (2011)

    Article  Google Scholar 

  20. C. Han, L. Zhanga, H. Li, Highly selective and sensitive colorimetric probes for Yb3+ ions based on supramolecular aggregates assembled from β-cyclodextrin–4,4′-dipyridine inclusion complex modified silver nanoparticles. Chem. Commun. 24, 3545–3547 (2009)

    Article  Google Scholar 

  21. S.K. Ghosh, T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–4862 (2007)

    Article  Google Scholar 

  22. V.V. Kumar, S.P. Anthony, Silver nanoparticles based selective colorimetric sensor for Cd2+, Hg2+and Pb2+ions: tuning sensitivity and selectivity using co-stabilizingagents. Sens. Actuators B 191, 31–36 (2014)

    Article  Google Scholar 

  23. K. Aslan, J.R. Lakowicz, C.D. Geddes, Nanogold-plasmon-resonance-based glucose sensing. Anal. Biochem. 330, 145–155 (2004)

    Article  Google Scholar 

  24. A.J. Reynolds, A.H. Haines, D.A. Russell, Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate–carbohydrate interactions. Langmuir 22, 1156–1163 (2006)

    Article  Google Scholar 

  25. D.C. Hone, A.H. Haines, D.A. Russell, Rapid, quantitative colorimetric detection of a lectin using mannose-stabilized gold nanoparticles. Langmuir 19, 7141–7144 (2003)

    Article  Google Scholar 

  26. C.S. Tsai, T.B. Yu, C.T. Chen, Gold nanoparticle-based competitive colorimetric assay for detection of protein–protein interactions. Chem. Commun. 34, 4273–4275 (2005)

    Article  Google Scholar 

  27. A. Laromaine, L.L. Koh, M. Murugesan, R.V. Ulijn, M.M. Stevens, Protease triggered dispersion of nanoparticle assemblies. J. Am. Chem. Soc. 129, 4156–4157 (2007)

    Article  Google Scholar 

  28. I.V. Anambiga, V. Suganthan, N.A.N. Raj, G. Buvaneswari, T.S.S. Kumar, Colorimetric detection of lead ions using glutathione stabilized silver nanoparticles. Int. J. Sci. Eng. Res. 4, 710–715 (2013)

    Google Scholar 

  29. T.A. Saleh, M.M. Al-Shalalfeh, A.A. Al-Saadi, Graphene dendrimer-stabilized silver nanoparticles for detection of methimazole using surfaceenhanced raman scattering with computational assignment. Sci. Rep. 6, 32185 (2016). https://doi.org/10.1038/srep32185

    Article  ADS  Google Scholar 

  30. Z. Shervani, Y. Ikushima, M.S. Hajime, K. Yukiya, H. Toshirou, Y. Takako, N. Hironobu, K. Aramaki, Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym. Sci. 286, 403–410 (2008)

    Article  Google Scholar 

  31. E.O. Dare, C.O. Oseghale, A.H. Labulo, E.T. Adesuji, E.E. Elemike, J.C. Onwuka, J.T. Bamgbose, Green synthesis and growth kinetics of nanosilver under bio-diversified plant extracts influence. J. Nanostructure Chem. 5, 85–94 (2015)

    Article  Google Scholar 

  32. S.A. Ogundare, W.E. Zyl, Nanocrystalline cellulose as reducing- and stabilizing agent in the synthesis of silver nanoparticles: Application as a surface-enhanced Raman scattering (SERS) substrate. Surf. Interfaces (2018). https://doi.org/10.1016/j.surfin.2018.06.004

    Article  Google Scholar 

  33. M. Firdaus, S. Andriana, W.A. Elvinawati, E. Swistoro, A. Ruyani, A. Sundaryono, Green synthesis of silver nanoparticles using Carica papaya fruit extract under sunlight irradiation and their colorimetric detection of mercury ions. J. Phys. 817, 012029 (2017)

    Google Scholar 

  34. S. Maiti, G. Barman, J.K. Laha, Biosynthesized gold nanoparticles as catalyst. Int. J. Sci. Eng. Res. 5, 1226–1230 (2014)

    Google Scholar 

  35. C. Venkata, S. Prakash, I. Prakash, Bioactive chemical constituents from pomegranate (Punica granatum) juice seed and peel-a review. Int. J. Res. Chem. Environ. 1, 1–18 (2011)

    Google Scholar 

  36. X. Huang, H. Wu, X. Liao, B. Sh, One-step, size-controlled synthesis of gold nanoparticles at room temperature using plant tannin. Green Chem. 12, 395–399 (2010)

    Article  Google Scholar 

  37. S. Maiti, G. Barman, J.K. Laha, Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Appl. Nanosci. 6, 529–538 (2016)

    Article  ADS  Google Scholar 

  38. A. Chhatre, P. Solasa, S. Sakle, R. Thaokar, A. Mehra, Color and surface plasmon effects in nanoparticle systems: case of silver nanoparticles prepared by microemulsion route. Colloids Surf. A 404, 83–92 (2012)

    Article  Google Scholar 

  39. F. Cosme, T. Pinto, A. Vilela, Phenolic compounds and antioxidant activity in grape juices: a chemical and sensory view. Beverages 4, 22 (2018)

    Article  Google Scholar 

  40. H. Schulza, M. Baranska, Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 43, 13–25 (2007)

    Article  Google Scholar 

  41. C. Yohannan, P. Hema, T. Varghese, D. Philip, FT-IR, FT-Raman and SERS spectra of vitamin C. Spectrochim. Acta 65, 802–804 (2006)

    Article  Google Scholar 

  42. S.D. Silva, R.P. Feliciano, L.V. Boasa, M.R. Bronze, Application of FTIR-ATR to moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chem. 150, 489–493 (2014)

    Article  Google Scholar 

  43. J. Krajczewski, K.K. Taj, A. Kudelski, Plasmonic nanoparticles in chemical analysis. RSC Adv. 7, 17559 (2017)

    Article  Google Scholar 

  44. V.K.N. Mehta, J.K.V. Rohit, S.K. Kailasa, Functionalization of silver nanoparticles with 5-sulfoanthranilic acid dithiocarbamate for selective colorimetric detection of Mn2+ and Cd2+ ions. New J. Chem. 40, 4566–4574 (2016)

    Article  Google Scholar 

  45. Y. Sun, T. Zuo, F. Guo, J. Sun, Z. Liu, G. Diao, Perylene dye-functionalized silver nanoparticles serving as pH-dependent metal sensor systems. RSC Adv. 7, 24215–24220 (2017)

    Article  Google Scholar 

  46. Y. Guo, Y. Zhang, H. Shao, Z. Wang, X. Wang, X. Jiang, Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles. Anal. Chem. 86, 8530–8534 (2014)

    Article  Google Scholar 

  47. V.V. Kumar, S.P. Anthony, Silver nanoparticles based selective colorimetric sensor for Cd2+, Hg2+ and Pb2+ ions: tuning sensitivity and selectivity using co-stabilizing agents. Sens. Actuators B 191, 31–36 (2014)

    Article  Google Scholar 

  48. M.R. Fallahi, G. Khayatian, Cadmium determination based on silver nanoparticles modified with 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane. J. Iran Chem. Soc. 14, 1469–1476 (2017)

    Article  Google Scholar 

  49. M. Zhang, Y. Liu, B. Ye, Colorimetric assay for parallel detection of Cd2+, Ni2+ and Co2+ using peptide-modified gold nanoparticles. Analyst 137, 601–607 (2012)

    Article  ADS  Google Scholar 

  50. W. Jin, P. Huang, F. Wu, L. Ma, Ultrasensitive colorimetric assay of cadmium ion based on silver nanoparticles functionalized with 5-sulfosalicylic acid for wide practical applications. Analyst 140, 3507–3513 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Guilan for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaghayegh Jabariyan or Mohammad A. Zanjanchi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabariyan, S., Zanjanchi, M.A. Colorimetric detection of cadmium ions using modified silver nanoparticles. Appl. Phys. A 125, 872 (2019). https://doi.org/10.1007/s00339-019-3167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3167-7

Navigation