Skip to main content
Log in

Laser-induced forward transfer of silver nanoparticle ink using burst technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser-induced forward transfer (LIFT) is an effective approach to print materials in liquid state with high resolution. This procedure, however, suffers from bulging problem when printing continuous lines or patterns. In this study, LIFT of silver nanoparticle ink using burst technique was developed to mitigate this issue during printing continuous lines. Firstly, a set of droplet printing experiments were conducted to investigate the influences of the pulse energy and burst mode on the morphologies of the printed features. It was found that the resolution was enhanced and the phenomenon of splashing was improved with the introduction of burst technique at the same energy level. Thereafter, a group of lines were printed by changing the scanning speed in bursts of 1, 2 or 3 pulses. The results showed that the bulging of the printed line was effectively mitigated and the resolution was significantly improved in burst-3 mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Serra, A. Piqué, Laser-induced forward transfer: fundamentals and applications. Adv. Mater. Technol. 4(1), 1800099 (2018)

    Article  Google Scholar 

  2. S. Papazoglou, I. Zergioti, Laser induced forward transfer (LIFT) of nano-micro patterns for sensor applications. Microelectron. Eng. 182, 25–34 (2017)

    Article  Google Scholar 

  3. J. Bohandy, B.F. Kim, F.J. Adrian, Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60, 1538–1539 (1986)

    Article  ADS  Google Scholar 

  4. Q. Li, D. Grojo, A.P. Alloncle, P. Delaporte, Dynamics of double-pulse laser printing of copper microstructures. Appl. Surf. Sci. 471, 627–632 (2019)

    Article  ADS  Google Scholar 

  5. A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Laser-induced jet formation and droplet ejection from thin metal films. Appl. Phys. A 106, 479–487 (2012)

    Article  ADS  Google Scholar 

  6. M. Feinaeugle, R. Pohl, T. Bor, T. Vaneker, G.W. Römer, Printing of complex free-standing microstructures via laser-induced forward transfer (LIFT) of pure metal thin films. Addit. Manuf. 24, 391–399 (2018)

    Article  Google Scholar 

  7. Z. Huang, Y. Huang, Y. Chen, Y. Deng, Z. Zhao, Direct and opposite droplet ejections from metal films induced by nanosecond laser pulses: experimental observation and lattice boltzmann modeling. J Micromech. Microeng. 29(2), 025001 (2019)

    Article  Google Scholar 

  8. C. Constantinescu, A.K. Diallo, L. Rapp, P. Cremillieu, R. Mazurczyk, F. Serein-Spirau et al., Laser-induced forward transfer of multi-layered structures for OTFT applications. Appl. Surf. Sci. 336, 11–15 (2015)

    Article  ADS  Google Scholar 

  9. M. Makrygianni, A. Ainsebaa, M. Nagel, S. Sanaur, Y.S. Raptis, I. Zergioti et al., Laser printed organic semiconductor PQT-12 for bottom-gate organic thin-film transistors: fabrication and characterization. Appl. Surf. Sci. 390, 823–830 (2016)

    Article  ADS  Google Scholar 

  10. M. Colina, P. Serra, J.M. Fernández-Pradas, L. Sevilla, J.L. Morenza, DNA deposition through laser induced forward transfer. Biosens. Bioelectron. 20, 1638–1642 (2005)

    Article  Google Scholar 

  11. A.K. Nguyen, R.J. Narayan, Liquid-phase laser induced forward transfer for complex organic inks and tissue engineering. Ann. Biomed. Eng. 45, 84–99 (2017)

    Article  Google Scholar 

  12. A. Sorkio, L. Koch, L. Koivusalo, A. Deiwick, S. Miettinen, B. Chichkov et al., Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials 171, 57–71 (2018)

    Article  Google Scholar 

  13. J.M. Fernández-Pradas, P. Sopeña, S. Gonzalez-Torres, J. Arrese, A. Cirera, P. Serra, Laser-induced forward transfer for printed electronics applications. Appl. Phys. A 124(2), 214 (2018)

    Article  ADS  Google Scholar 

  14. A.A. Antoshin, S.N. Churbanov, N.V. Minaev, Z. Deying, Z. Yuanyuan, A.I. Shpichka et al., LIFT-bioprinting, is it worth it? Bioprinting 15, e00052 (2019)

    Article  Google Scholar 

  15. B.T. Vinson, S.C. Sklare, D.B. Chrisey, Laser-based cell printing techniques for additive biomanufacturing. Curr. Opin. Biomed. Eng. 2, 14–21 (2017)

    Article  Google Scholar 

  16. A. Piqué, J. Fitz-Gerald, D.B. Chrisey, R.C.Y. Auyeung, H.D. Wu, S. Lakeou, R.A. McGill, Direct writing of electronic materials using a new laser assisted transfer/annealing technique. Proc. SPIE. 3933, 105–112 (2000)

    Article  ADS  Google Scholar 

  17. M. Makrygianni, I. Kalpyris, C. Boutopoulos, I. Zergioti, Laser induced forward transfer of Ag nanoparticles ink deposition and characterization. Appl. Surf. Sci. 297, 40–44 (2014)

    Article  ADS  Google Scholar 

  18. P. Sopeña, J.M. Fernández-Pradas, P. Serra, Laser-induced forward transfer of low viscosity inks. Appl. Surf. Sci. 418, 530–535 (2017)

    Article  ADS  Google Scholar 

  19. M. Duocastella, H. Kim, P. Serra, A. Piqué, Optimization of laser printing of nanoparticle suspensions for microelectronic applications. Appl. Phys. A 106, 471–478 (2012)

    Article  ADS  Google Scholar 

  20. C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, I. Zergioti, Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality. Microfluid. Nanofluid. 16, 493–500 (2014)

    Article  Google Scholar 

  21. M. Duocastella, J.M. Fernández-Pradas, J.L.M.P. Serra, Sessile droplet formation in the laser-induced forward transfer of liquids: A time-resolved imaging study. Thin Solid Films 518, 5321–5325 (2010)

    Article  ADS  Google Scholar 

  22. A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla et al., Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies. Appl. Surf. Sci. 465, 136–142 (2019)

    Article  ADS  Google Scholar 

  23. S.A. Mathews, R.C.Y. Auyeung, H. Kim, N.A. Charipar, A. Piqué, High-speed video study of laser-induced forward transfer of silver nano-suspensions. J. Appl. Phys. 114, 064910 (2013)

    Article  ADS  Google Scholar 

  24. P. Delrot, S.P. Hauser, J. Krizek, C. Moser, Depth-controlled laser-induced jet injection for direct three-dimensional liquid delivery. Appl. Phys. A 124, 616 (2018)

    Article  ADS  Google Scholar 

  25. C. Florian, F. Caballero-Lucas, J.M. Fernández-Pradas, R. Artigas, S. Ogier, D. Karnakis, P. Serra, Conductive silver ink printing through the laser-induced forward transfer technique. Appl. Surf. Sci. 336, 304–308 (2015)

    Article  ADS  Google Scholar 

  26. C. Florian, F. Caballero-Lucas, J.M. Fernández-Pradas, S. Ogier, L. Winchester, D. Karnakis, R. Artigas, P. Serra, Printing of silver conductive lines through laser-induced forward transfer. Appl. Surf. Sci. 374, 265–270 (2016)

    Article  ADS  Google Scholar 

  27. D. Puerto, E. Biver, A.P. Alloncle, P. Delaporte, Single step high-speed printing of continuous silver lines by laser-induced forward transfer. Appl. Surf. Sci. 374, 183–189 (2016)

    Article  ADS  Google Scholar 

  28. X. Wang, C. Li, C. Ma, J. Feng, W. Hong, Z. Zhang, Formation of laser induced periodic structures on stainless steel using multi-burst picosecond pulses. Opt. Express 26, 6325–6330 (2018)

    Article  ADS  Google Scholar 

  29. J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7, 196–198 (1982)

    Article  ADS  Google Scholar 

  30. C. Boutopoulos, A.P. Alloncle, I. Zergioti, P. Delaporte, A time-resolved shadowgraphic study of laser transfer of silver nanoparticle ink. Appl. Surf. Sci. 278, 71–76 (2013)

    Article  ADS  Google Scholar 

  31. J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997)

    Article  ADS  Google Scholar 

  32. I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 336, 157–162 (2015)

    Article  ADS  Google Scholar 

  33. W. Hu, Y.C. Shin, G. King, Modeling of multi-burst mode pico-second laser ablation for improved material removal rate. Appl. Phys. A 98, 407–415 (2009)

    Article  ADS  Google Scholar 

  34. P.C. Duineveld, The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J. Fluid. Mech. 477, 175–200 (2003)

    Article  ADS  Google Scholar 

  35. P. Sopeña, J. Arrese, S. Gonzalez-Torres, J.M. Fernández-Pradas, A. Cirera, P. Serra, Low-cost fabrication of printed electronics devices through continuous wave laser-induced forward transfer. ACS Appl. Mater. Interface 9, 29412–29417 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51705258), the Fundamental Research Funds for the Central Universities (KJQN201843), Natural Science Foundation of Jiangsu Province (BK20150685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingsheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Xu, B., Huang, Y. et al. Laser-induced forward transfer of silver nanoparticle ink using burst technique. Appl. Phys. A 125, 845 (2019). https://doi.org/10.1007/s00339-019-3148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3148-x

Navigation