Skip to main content
Log in

Effect of defects on mechanical properties of novel hybrid graphene-h-BN/copper layered nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The geometric imperfections (circular and square nanohole) were created in different regions of graphene/h-BN heterostructure. Defective heterostructures were used as a reinforcing material for copper (defective G/h-BN@Cu). The mechanical properties of defective G/h-BN@Cu were studied, and the effects of defect size and position on mechanical properties were studied by molecular dynamics. The results showed that mechanical properties of the defective G/h-BN@Cu nanostructure decrease with the increase of the diameter of the nanohole. The effects of nanohole on the stress and strain of the G/h-BN@Cu nanostructures are much higher than Young's modulus. The three mechanical values of G/h-BN@Cu nanostructures in the presence of nanoholes change considerably and do not follow the general trends. When the nanohole is created at h-BN region, a greater reduction of mechanical properties is at this location, relative to other positions. The adverse effect of circular defects on mechanical properties of G/h-BN@Cu nanostructures is lower than that of square defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Zheng, M. Lulu, S. Gang et al., In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotechnol. 8, 119–124 (2013)

    Article  ADS  Google Scholar 

  2. A. Mishchenko, J. Tu, Y. Cao et al., Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014)

    Article  ADS  Google Scholar 

  3. C. Woods, L. Britnell, A. Eckmann et al., Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014)

    Article  Google Scholar 

  4. A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013)

    Article  Google Scholar 

  5. K. Novoselov, A. Mishchenko, A. Carvalho et al., 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016)

    Article  Google Scholar 

  6. F. Withers, O. Del Pozo-Zamudio, A. Mishchenko et al., Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015)

    Article  ADS  Google Scholar 

  7. M. Lee, J.R. Wallbank, P. Gallagher et al., Ballistic miniband conduction in a graphene superlattice. Science 353, 1526–1529 (2016)

    Article  ADS  Google Scholar 

  8. G. Argentero, A. Mittelberger, M.R.A. Monazam et al., Unraveling the 3D atomic structure of a suspended graphene/hBN van der Waals heterostructure. Nano Lett. 17, 1409–1416 (2017)

    Article  ADS  Google Scholar 

  9. L. Ci, L. Song, C. Jin et al., Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010)

    Article  ADS  Google Scholar 

  10. M. Yankowitz, J. Xue, D. Cormode et al., Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012)

    Article  Google Scholar 

  11. M. Yankowitz, J. Jung, E. Laksono et al., Dean dynamic band-structure tuning of graphene moiré superlattices with pressure. Nature 557, 404–408 (2018)

    Article  ADS  Google Scholar 

  12. Y. Dong, C. Wu, C. Zhang et al., Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride. NPJ Comput. Mater. 5, 26 (2019)

    Article  ADS  Google Scholar 

  13. Y.J. Mai, F.X. Chen, W.Q. Lian et al., Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets. J. Alloys Compd. 756, 1–7 (2018)

    Article  Google Scholar 

  14. L. Jiapeng, X. Dingbang, T. Zhanqiu et al., Enhanced mechanical properties and high electrical conductivity in multiwalled carbon nanotubes reinforced copper matrix nanolaminated composites. Mater. Sci. Eng. 729, 452–457 (2018)

    Article  Google Scholar 

  15. W. Hu, Z. ZhaoHui, H. ZhengYang et al., Improvement of interfacial interaction and mechanical properties in copper matrix composites reinforced with copper coated carbon nanotubes. Mater. Sci. Eng. 715, 163–173 (2018)

    Article  Google Scholar 

  16. D.B. Xiong, M. Cao, Q. Guo et al., Graphene-and-copper artificial nacre fabricated by a preform impregnation process: bioinspired strategy for strengthening–toughening of metal matrix composite. ACS Nano 9, 6934–6943 (2015)

    Article  Google Scholar 

  17. X. Zhang, C. Shi, E. Liu et al., Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network. Nanoscale 9, 11929–11938 (2017)

    Article  Google Scholar 

  18. Y. Chen, X. Zhang, E. Liu et al., Fabrication of in-situ grown graphene reinforced Cu matrix composites. Sci. Rep. 6, 19363 (2016)

    Article  ADS  Google Scholar 

  19. A. Giacomo, M. Andreas, R.A.M. Mohammad et al., Unraveling the 3D atomic structure of a suspended graphene/hBN van der Waals heterostructure. Nano Lett. 17, 1409–1416 (2017)

    Article  Google Scholar 

  20. L. Guangyuan, W. Tianru, Y. Peng et al., Synthesis of high-quality graphene and hexagonal boron nitride monolayer in-plane heterostructure on Cu–Ni alloy. Adv. Sci. 4, 1700076 (2017)

    Article  Google Scholar 

  21. E.E. Kasra, S. Sadegh, J. Maisam, The mechanical design of hybrid graphene/boron nitride nanotransistors: geometry and interface effects. Solid State Commun. 270, 82–86 (2018)

    Article  Google Scholar 

  22. E.E. Kasra, S. Sadegh, J. Maisam, Studying the effects of longitudinal and transverse defects on the failure of hybrid grapheme–boron nitride sheets: a molecular dynamics simulation. Physica E 104, 71–81 (2018)

    Article  Google Scholar 

  23. C. Sevik, A. Kinaci, J.B. Haskins et al., Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011)

    Article  ADS  Google Scholar 

  24. A. Kınacı, J.B. Haskins, C. Sevik, T. Çağın, Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012)

    Article  ADS  Google Scholar 

  25. E.E. Kasra, S. Sadegh, J. Maisam, Mechanical properties of defective hybrid graphene–boron nitride nanosheets: a molecular dynamics study. Comput. Mater. Sci. 149, 170–181 (2018)

    Article  Google Scholar 

  26. K. Duan, F.L. Zhu, K. Tang et al., Effects of chirality and number of graphene layers on the mechanical properties of graphene-embedded copper nanocomposites. Comput. Mater. Sci. 117, 294–299 (2016)

    Article  Google Scholar 

  27. X.Y. Liu, F.C. Wang, H.A. Wu et al., Strengthening metal nanolaminates under shock compressing through dual effect of strong and weak graphene interface. Appl. Phys. Lett. 104(23), 231901 (2014)

    Article  ADS  Google Scholar 

  28. X.Y. Liu, F.C. Wang, W.Q. Wang et al., Interfacial strengthening and self-healing effect in graphene–copper nanolayered composites under shear deformation. Carbon 107, 680–688 (2016)

    Article  Google Scholar 

  29. H.J. Hwang, W.Y. Choi, J.W. Kang et al., Molecular dynamics simulations of nanomemory element based on boron–nitride nanotube-to-peapod transition. Comput. Mater. Sci. 33, 317–324 (2005)

    Article  Google Scholar 

  30. Q.N. Guo, X.D. Yue, S.E. Yang et al., Tensile properties of ultrathin copper films and their temperature dependence. Comput. Mater. Sci. 50, 319–330 (2010)

    Article  Google Scholar 

  31. H.A. Wu, Molecular dynamics study of the mechanics of metal nanowires at finite temperature. Eur. J. Mech. A/Solids 25, 370–377 (2006)

    Article  ADS  Google Scholar 

  32. C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  ADS  Google Scholar 

  33. A. Bosak, J. Serrano, M. Krisch et al., Elasticity of hexagonal boron nitride: inelastic X-ray scattering measurements. Phys. Rev. B 73, 041402 (2006)

    Article  ADS  Google Scholar 

  34. Y. He, F. Huang, H. Li et al., Tensile mechanical properties of nano-layered copper/graphene composite. Physica E 87, 233–236 (2017)

    Article  ADS  Google Scholar 

  35. W. Zhao, S.M. Kozlov, O. Höfert et al., Graphene on Ni (111) coexistence of different surface structures. J. Phys. Chem. Lett. 2(7), 759–764 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Natural Science Foundation of China (11572186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Fan.

Ethics declarations

Conflict of interest

The author declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, W., Fan, L. Effect of defects on mechanical properties of novel hybrid graphene-h-BN/copper layered nanostructures. Appl. Phys. A 125, 663 (2019). https://doi.org/10.1007/s00339-019-2971-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2971-4

Navigation