Skip to main content
Log in

Study of the effects of both film thickness and annealing time on CuxSyOz thin films for the possibility of usage as solar control coatings

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CuxSyOz thin films with various thicknesses were prepared by thermal evaporation. The structural, morphological, electrical and optical characteristics are examined for possible usage as solar control coatings on cars and architectural windows. The effect of thermal annealing on CuxSyOz films was examined for the thick film of 734 nm at 550 °C. The annealing was done for various annealing times of 2, 4 and 6 h. Energy-dispersive analysis of X-ray (EDAX) was used to evaluate the chemical composition of the as-prepared and annealed films. X-ray diffraction (XRD) elucidated the presence of hexagonal CuS and orthorhombic Cu2S together with a small contribution of the orthorhombic CuSO4 phase for the thicker films ( ≥ 241 nm). With increase in the annealing time, the hexagonal CuS and orthorhombic Cu2S peaks disappeared. The morphology of the films is strongly dependent on both thickness and annealing time. By controlling the film thickness, the transmission of the NIR region can be brought to zero, whereas adequate transmission, 6–27%, in the visible spectral region was maintained. After annealing, the transmittance increased while the reflection decreased. The optical band gap and the optical constants of the annealed films were also studied. It was found that the values can differ depending on the annealing time. The as-prepared CuxSyOz films behaves as metallic materials. It is found that room temperature resistivity decreased as the film thickness increased, while it increased with annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Li, L. Sun, Y. Zhao, T. Tan, Y. Zhang, Appl. Surf. Sci. 466, 309–319 (2019)

    Article  ADS  Google Scholar 

  2. F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, Sensor Actuat. A Phys. 249, 68–76 (2016)

    Article  Google Scholar 

  3. Z. Jin, Y. Li, J.C. Yu, J. Chem. Educ. 94, 476–479 (2017)

    Article  Google Scholar 

  4. H. Hu, O. Gomez-Daza, L. Baños, Sol. Energy Mater. Sol. Cells 56, 57–65 (1998)

    Article  Google Scholar 

  5. M. Pal, N.R. Mathews, E. Sanchez-Mora, U. Pal, F. Paraguay-Delgado, X. Mathew, J. Nanoparticle Res. 17, 1–12 (2015)

    Article  Google Scholar 

  6. J.S. Chung, H.J. Sohn, J. Power Sourc. 108, 226–231 (2002)

    Article  ADS  Google Scholar 

  7. N.P. Huse, A.S. Dive, K.P. Gattu, R. Sharma, Mater. Sci. Semicond. Process. 67, 62–68 (2017)

    Article  Google Scholar 

  8. R.E. Agbenyeke, B.K. Park, T.-M. Chung, C.G. Kim, J.H. Han, Appl. Surf. Sci. 456, 501–506 (2018)

    Article  ADS  Google Scholar 

  9. J. Liu, Z. Wu, K. Zhu, Z. Li, B. Feng, Q. Gu, P. Liu, S. Zhang, Y. You, B. Wang, J. Wang, J. Qiu, J. Alloys Compd. 685, 266–271 (2016)

    Article  Google Scholar 

  10. R. Mandal, G. Basu, B. Ghosh, Mater. Today Proc. 5, 23099–23106 (2018)

    Article  Google Scholar 

  11. K. Anuar, Z. Zainal, M.Z. Hussein, N. Saravanan, I. Haslina, Sol. Energy Mater. Sol. Cells 73, 351–365 (2002)

    Article  Google Scholar 

  12. S. Deng, Y. Shen, D. Xie, Y. Lu, X. Yu, L. Yang, X. Wang, X. Xia, J. Tu, J. Energy Chem. 39, 61–67 (2019)

    Article  Google Scholar 

  13. I. Grozdanov, M. Najdoski, J. Solid State Chem. 114, 469 (1995)

    Article  ADS  Google Scholar 

  14. A. Bollero, M. Grossberg, B. Asenjo, M.T. Gutiérrez, Surf. Coat. Technol. 204, 593–600 (2009)

    Article  Google Scholar 

  15. G. Lakhotiya, N. Belsare, A. Rana, V. Gupta, Curr. Appl. Phys. 19, 394–399 (2019)

    Article  ADS  Google Scholar 

  16. G. Liu, T. Schulmeyer, J. Brotz, A. Klein, W. Jaegermann, Thin Solid Films 431–432, 477–482 (2003)

    Article  Google Scholar 

  17. F.A. Sabah, N.M. Ahmed, Z. Hassan, H.S. Rasheed, Procedia Chem. 19, 15–20 (2016)

    Article  Google Scholar 

  18. P. More, S. Dhanayat, K. Gattu, S. Mahajan, D. Upadhye, R. Sharma, AIP Conf. Proc. 1728, 020489 (2016)

    Article  Google Scholar 

  19. V.S. Taur, R.A. Joshi, A.V. Ghule, R. Sharma, Renew. Energy 38, 219–223 (2012)

    Article  Google Scholar 

  20. S. Wang, Q. Huang, X. Wen, X.-Y. Li, S. Yang, Phys. Chem. Chem. Phys. 4, 3425–3429 (2002)

    Article  Google Scholar 

  21. T.S. De Velde, J. Dieleman, Philips Res. Rep. 28, 573 (1973)

    Google Scholar 

  22. M.A. Awad, N.M.A. Hadia, Optik 142, 334 (2017)

    Article  ADS  Google Scholar 

  23. Y. Jiang, N. Bahlawane, J. Alloys Compd. 485, L52–L55 (2009)

    Article  Google Scholar 

  24. Z.H. Dughaish, S.H. Mohamed, Indian J. Phys. 87, 741–746 (2013)

    Article  ADS  Google Scholar 

  25. A. El-Denglawey, M.M. Makhlouf, M. Dongol, Results Phys. 10, 714–720 (2018)

    Article  ADS  Google Scholar 

  26. CRC, Handbook of Chemistry and Physics, 61st, ed. by Robert C. Weast (1980-1981), p. D-70

  27. G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, Phys. Status Solidi B 195, 179 (1996)

    Article  ADS  Google Scholar 

  28. S.H. Mohamed, J. Phys. D Appl. Phys. 43(035406), 8 (2010)

    Google Scholar 

  29. G. Knuyt, C. Quaeyhaegens, J. D’Haen, L.M. Stals, Thin Solid Films 258, 159 (1995)

    Article  ADS  Google Scholar 

  30. P.B. Barna, M. Adamik, Thin Solid Films 317, 27 (1998)

    Article  ADS  Google Scholar 

  31. V.V.V.N.S.R. Rao, K.P. Abraham, Metall. Trans. 2, 2464 (1971)

    Google Scholar 

  32. J.G. Dunn, C. Muzenda, Thermochim. Acta 369, 117–123 (2001)

    Article  Google Scholar 

  33. R. Saxena, M.J. Frederick, G. Ramanath, W.N. Gill, J.L. Plawsky, Phys. Rev. B 72, 115425 (2005)

    Article  ADS  Google Scholar 

  34. D.G. Gromov, S.A. Gavrilov, E.N. Redichev, S.V. Dubkov, Trends Phys. Chem. 14, 45 (2010)

    Google Scholar 

  35. B. Ren, L. Wang, J. Huang, K. Tang, Y. Yang, L. Wang, Vacuum 112, 70–72 (2015)

    Article  ADS  Google Scholar 

  36. M.S. Alqahtani, N.M.A. Hadia, S.H. Mohamed, Optik 173, 101–109 (2018)

    Article  ADS  Google Scholar 

  37. M.A. Rafea, A.A.M. Farag, N. Roushdy, Mater. Res. Bull. 47, 257–266 (2012)

    Article  Google Scholar 

  38. A. Bennouna, E.L. Ameziane, Sol. Energy Mater. 22, 201–214 (1991)

    Article  Google Scholar 

  39. D.H. Tassis, C. Dimitriadis, J. Brini, G. Kamarinos, A. Birbas, J. Appl. Phys. 85, 4091–4095 (1999)

    Article  ADS  Google Scholar 

  40. Y.B. He, A. Polity, I. Österreicher, D. Pfisterer, R. Gregor, B.K. Meyer, M. Hardt, Phys. B Condens. Matter 308–310, 1069–1073 (2001)

    Article  ADS  Google Scholar 

  41. C.J. Diliegros-Godines, D.I. Lombardero-Juarez, R. Machorro-Mejía, R.S. González, M. Pal, Opt. Mater. 91, 147–154 (2019)

    Article  ADS  Google Scholar 

  42. M. Ramya, S. Ganesan, Int. J. Pure Appl. Phys. 6, 243–249 (2010)

    Google Scholar 

  43. A.C. Rastogi, S. Salkalachen, V.G. Bhide, Thin Solid Films 52, 1–10 (1978)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, S.H., Hadia, N.M.A., Awad, M.A. et al. Study of the effects of both film thickness and annealing time on CuxSyOz thin films for the possibility of usage as solar control coatings. Appl. Phys. A 125, 587 (2019). https://doi.org/10.1007/s00339-019-2893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2893-1

Navigation