Skip to main content
Log in

A ultra-wideband thin microwave absorber using inkjet-printed frequency-selective surfaces combining carbon nanotubes and magnetic nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A ultra-wideband microwave absorber (UWMA) combining frequency-selective surfaces (FSS) and dielectric layers is proposed. FSS patterns are printed by inkjet on dielectric layers using a resistive magnetic ink made of suspended carbon nanotubes decorated with \({\text {Fe}}_3{\text {O}}_4\) nanoparticles. The UWMA exhibits a huge fractional bandwidth of 140%, corresponding to reflectivity lower than − 10 dB and absorption higher than 90%, observed from 7 GHz to 43 GHz, meaning a 36 GHz bandwidth, for a thickness of only 0.26 \(\lambda\). This performance is achieved through a proper selection of FSS surface resistance, tuned by the number of printed layers. Excellent agreement is observed between designed and measured low reflectivity and high absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Caloz, T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (Wiley, New York, 2006)

    Google Scholar 

  2. R. Marques et al., Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications (Wiley, New York, 2008)

    Google Scholar 

  3. C. Watts et al., Adv. Mater. 24, 98–120 (2012)

    Google Scholar 

  4. B. Chambers, IEE Electron. Lett. 30, 1353–1354 (1994)

    Article  ADS  Google Scholar 

  5. F. Che Seman et al., IET Microwaves Antennas Propag. 5, 149–156 (2011)

    Article  Google Scholar 

  6. A. Kazemzadeh, A. Karlsson, IEEE Trans. Antennas Propag. 58, 3637–3646 (2010)

    Article  ADS  Google Scholar 

  7. A. Kazemzadeh, IEEE Trans. Antennas Propag. 59, 135–140 (2011)

    Article  ADS  Google Scholar 

  8. E. Yildimy, O. Aydin Civi, Proceedings of 5th European Conference on Antenna and Propagation (EUCAP), Rome, Italy, 1–15 April (2011)

  9. M. Olszewska-Placha, IEEE Trans. Antennas Propag. 63, 565–572 (2015)

    Article  ADS  Google Scholar 

  10. F. Costa et al., IEEE Trans. Antennas Propag. 58, 1551–1158 (2010)

    Article  ADS  Google Scholar 

  11. X. Huang et al., Sci. Rep. 6, 38197 (2016)

    Article  ADS  Google Scholar 

  12. W.J. Lee et al., Compos. Sci. Technol. 68, 2485–2489 (2008)

    Article  Google Scholar 

  13. Y. Gao et al., Ind. Eng. Chem. Res. 53, 16777–16784 (2014)

    Article  Google Scholar 

  14. O.-S. Kwon et al., Carbon 58, 116–127 (2013)

    Article  Google Scholar 

  15. H. Ki Kim et al., Opt. Express 23, 5900 (2015)

    ADS  Google Scholar 

  16. A. Rathmell et al., Adv. Mater. 23, 4798–4803 (2011)

    Article  Google Scholar 

  17. R.P. Tortorich, J.-W. Choi, Nanomaterials 3, 453–468 (2013)

    Article  Google Scholar 

  18. K.-Y. Shin et al., Adv. Mater. 23, 2113–2118 (2011)

    Article  Google Scholar 

  19. S.K. Eshkalaka et al., Appl. Mater. Today 9, 372–386 (2017)

    Article  Google Scholar 

  20. J. Li et al., Adv. Mater. 25, 3985–399 (2013)

    Article  ADS  Google Scholar 

  21. E.B. Secor et al., J. Phys. Chem. Lett. 4, 1347–1351 (2013)

    Article  Google Scholar 

  22. F. Mederos-Henry et al., J. Mater. Chem. C 3, 3290 (2016)

    Article  Google Scholar 

  23. W. Baaziz et al., J. Phys. Chem. C 118, 3795–3810 (2014)

    Article  Google Scholar 

  24. N. Quiévy et al., IEEE Trans. Electromagn. Compat. 54, 43–51 (2012)

    Article  Google Scholar 

  25. Y. Zhang et al., J. Mater. Chem. 21, 14563–14568 (2011)

    Article  Google Scholar 

  26. H. Lv, J. Mater. Chem. C 3, 10232 (2015)

    Article  Google Scholar 

  27. W.W. Lu et al., ACS Appl. Mater. Interfaces 7, 19408–19415 (2015)

    Article  Google Scholar 

  28. Z. Mo, Carbon 144, 433–439 (2019)

    Article  Google Scholar 

  29. Q. Zhou et al., Mater. Des. 123, 46–53 (2017)

    Article  Google Scholar 

  30. H. Huang et al., ACS Appl. Mater. Interfaces 10, 44731–44740 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Fund for Scientific Research (F.R.S.-FNRS, Belgium) for supporting this research. This work is also supported by the Walloon region, and by the “Communauté Française de Belgique”, through the project “Nano4waves” funded by its research program “Actions de Recherche Concertées”. Special thanks are also due to Mr. S. Depaifve and Profs. A. Delcorte and C. Bailly for fruitful discussions in the frame of the Nano4waves project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Huynen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswar, R., Mederos-Henry, F., Dupont, V. et al. A ultra-wideband thin microwave absorber using inkjet-printed frequency-selective surfaces combining carbon nanotubes and magnetic nanoparticles. Appl. Phys. A 125, 473 (2019). https://doi.org/10.1007/s00339-019-2764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2764-9

Navigation