Skip to main content
Log in

Experimental and molecular modeling of interaction of carbon quantum dots with glucose

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon Quantum Dots are a 0D dimension nanomaterial and they have promising properties, such as fluorescence. In this study, the carbon quantum dots were derived from biochar. The prepared sample was characterized using a UV–visible spectrometer, Fourier transform infrared spectroscopy, and fluorescence spectroscopy, and the morphology was investigated using a high-resolution transmission electron microscopy image. The linear and nonlinear refractive indies were obtained from a UV–visible spectrum and a Z-scan signal. The carbon quantum dots were combined with glucose, and then the variation between the fluorescence spectrum and response time were investigated. The interaction of the carbon quantum dots with the glucose was simulated using density functional theory for finding the stable molecular in the lower energy. Consequently, the carbon quantum dots interacted with the glucose in van der Waals bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Jelinek, Carbon quantum dots, synthises, properties and application (Springer, Switzerland, 2017), pp. 5–27

    Google Scholar 

  2. R. Das, R. Bandyopadhyay, P. Pramanik, Mater. Today Chem. 8, 96e109 (2018)

    Google Scholar 

  3. S.Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev. 44, 362 (2015)

    Google Scholar 

  4. P. Demchenko, M.O. Dekaliuk, Methods Appl. Fluoresc. 1, 042001 (2013)

    ADS  Google Scholar 

  5. S.-T. Yang, X. Wang, H.F. Wang, F.S. Lu, P.G. Luo, L. Cao, M.J. Meziani, J.-H. Liu, Y.F. Liu, M. Chen, Y.P. Huang, Y.-P. Sun, J. Phys. Chem. C 113, 18110 (2009)

    Google Scholar 

  6. H. Goncalves, P.A.S. Jorge, J.R.A. Fernandes, J.C.G.E. da Silva, Sens. Actuator B Chem. 145, 702e707 (2010)

    Google Scholar 

  7. X.-B. Meng, J.-L. Sheng, H.-L. Tang, X.-J. Sun, H. Dong, F.-M. Zhang, Appl. Catal. B 244, 340 (2019)

    Google Scholar 

  8. Z.-G. Gu, D.-J. Li, C. Zheng, Y. Kang, C. Wçll, J. Zhang, Angew. Chem. Int. Ed. 56, 6853 (2017)

    Google Scholar 

  9. L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, Nanoscale 5, 4015e4039 (2013)

    Google Scholar 

  10. Q.T. Huang, S.R. Hu, H.Q. Zhang, J.H. Chen, Y.S. He, F.M. Li, W. Weng, J.C. Ni, X.X. Bao, Y. Lin, Analyst 138, 5417 (2013)

    ADS  Google Scholar 

  11. G.A. Posthuma-Trumpie, J.H. Wichers, M. Koets, L.B.J.M. Berendsen, A. van Amerongen, Anal. Bioanal. Chem. 402, 593 (2012)

    Google Scholar 

  12. H. Ding, L.-W. Cheng, Y.-Y. Ma, J.-L. Kong, H.-M. Xiong, New J. Chem. 37, 2515e2520 (2013)

    Google Scholar 

  13. Z.-R. Tang, Y.H. Zhang, Y.-J. Xu, A.C.S. Appl, Mater. Interfaces 4, 1512 (2012)

    Google Scholar 

  14. X. Zhang, H. Dong, X.-J. Sun, D.-D. Yang, J.-L. Sheng, H.-L. Tang, X.-B. Meng, F.-M. Zhang, ACS Sustain. Chem. Eng. 6(9), 11563 (2018)

    Google Scholar 

  15. Y. Wang, A. Hu, J. Mater. Chem. C 2, 6921 (2014)

    Google Scholar 

  16. X. Sun, Y. Lei, Trends Anal. Chem. 89, 163e180 (2017)

    Google Scholar 

  17. The Columbia Encyclopedia, 6th ed. 2015. Encyclopedia.com. 17 Nov. 2015 http://www.encyclopedia.com. Accessed 26 Apr 2009 at the Wayback Machine glucose

  18. S. Qiao, H. Li, H. Li, J. Liu, W. Kong, Q. Hu, H. Huang, Y. Liu, Z. Kang, RSC Adv. 5, 69042 (2015)

    Google Scholar 

  19. P. Shen, Y. Xia, Anal. Chem. 86, 5323 (2014)

    Google Scholar 

  20. N.A. Rahman, M. Hasan,  M.A.Hussain, J. Jahim, Mod. Appl. Sci. 2, 151 (2008)

  21. G.P. Parpinello, A. Versari, J. Chromatogr. Sci. 38, 259 (2000)

    Google Scholar 

  22. A.L. Galant, R.C. Kaufman, J.D. Wilson, Food Chem. 188, 149 (2015)

    Google Scholar 

  23. A.R. Sadrolhosseini, A.S.M. Noor, N. Faraji, A. Kharazmi, M.A. Mahdi, J. Nanomater. 962917, 8 (2014)

    Google Scholar 

  24. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, Nano Res. 8, 355 (2015)

    Google Scholar 

  25. M. Fox, Optical properties of solids (Oxford University Press Inc,  New York , 2001), pp. 1–8

    Google Scholar 

  26. E.M. Gullikson, Exp. Methods Phys. Sci. 31, 257 (1998)

    Google Scholar 

  27. A.G. Rad, H. Abbasi, K. Golyari, Int. J. Appl. Phys. Math. 2, 2 (2012)

    Google Scholar 

  28. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    ADS  Google Scholar 

  29. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14(27), 95 (1989)

    Google Scholar 

  30. L. Tian, D. Ghosh, W. Chen, Chem. Mater. 21, 2803 (2009)

    Google Scholar 

  31. M.A. Jhonsi, S. Thulasi, Chem. Phys. Lett. 661, 179 (2016)

    ADS  Google Scholar 

  32. B.S.B. Kasibabu, S.L. Dsouza, S. Jha, S.K. Kailasa, J. Fluoresc. 25, 803 (2015)

    Google Scholar 

  33. R.M. Clegg, O. Holub, C. Gohlke, Methods Enzymol. 360, 509–542 (2003)

    Google Scholar 

  34. J. Herbich, J. Waluk, R.P. Thummel, C.-Y. Hung, J. Photochem. Photobiol. A Chem. 80, 157–160 (1994)

    Google Scholar 

  35. P. Song, F.-C. Ma, Int. Rev. Phys. Chem. 32, 589–609 (2013)

    Google Scholar 

  36. I.G. Alty, D.W. Cheek, T. Chen, D.B. Smith, E.Q. Walhout, C.J. Abelt, J. Phys, Chem. A 120, 3518–3523 (2016)

    Google Scholar 

  37. H.P.S. Castro, M.K. Pereira, V.C. Ferreira, J.M. Hickmann, R.R.B. Correia, Opt. Mater. Express 7(2), 401 (2017)

    ADS  Google Scholar 

  38. C.X. Guo, J. Xie, B. Wang, X. Zheng, H.B. Yang, C.M. Li, Sci. Rep. 3, 2957 (2013)

    ADS  Google Scholar 

  39. G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H.-A. Chen, I.-S. Chen, C.-W. Chen, M. Chhowalla, Adv. Mater. 22, 505 (2010)

    Google Scholar 

  40. K. Krishnamoorthy, M. Veerapandian, R. Mohan, S.-J. Kim, Appl. Phys. A Mater. Sci. Process. 106, 501 (2012)

    ADS  Google Scholar 

  41. T. Gokus, R.R. Nair, A. Bonetti, M. Bohmler, A. Lombardo, K.S. Novoselov, A.K. Geim, A.C. Ferrari, A. Hartschuh, ACS Nano 2009(3), 3963 (2009)

    Google Scholar 

  42. P. Demchenko, M.O. Dekaliuk, Methods Appl. Fluoresc. 1, 042001 (2013)

    ADS  Google Scholar 

  43. L. Cao, M.J. Meziani, S. Sahu, Y.-P. Sun, Acc. Chem. Res. 203(46), 171 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Ministry of Education, Malaysia under the Fundamental Research Grant Scheme (FRGS/1/2016/TK05/UPM/02/4) and Institute of Advanced Technology (ITMA) UPM to provide the analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suraya Abdul Rashid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadrolhosseini, A.R., Rashid, S.A., Jamaludin, N. et al. Experimental and molecular modeling of interaction of carbon quantum dots with glucose. Appl. Phys. A 125, 529 (2019). https://doi.org/10.1007/s00339-019-2753-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2753-z

Navigation