Skip to main content
Log in

Plasmonic Ag nanoparticles and p-type CuO-modified ZnO nanorods for efficient photoelectrochemical water splitting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The light absorption range of semiconductor materials and the separation rate of electron–hole pairs are significant challenge in photoelectrochemical (PEC) water splitting. In this work, we first prepared a ternary heterojunction of ZnO/CuO/Ag by chemical bath deposition method. The formation of the heterojunction can improve the absorption range and increase the electron–hole pairs’ separation rate, and the loading of plasmonic Ag nanoparticles can expand the absorption range of visible light and generate more photogenerated electrons through surface plasmon resonance (SPR). The ZnO/CuO/Ag heterojunction photoelectrode reveals an efficient photocurrent density of 3.45 mA cm−2 at 1.23 V vs. RHE, which is 3.08 and 1.12 times higher compared with ZnO and ZnO/CuO photoelectrode, respectively. This study shows that the simultaneous reaction of heterojunction and plasmonic noble metal nanoparticles can synergistically improve the photoelectric properties of photoanodes in photoelectrochemical water-splitting system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Xu, P. Reunchan, S.X. Ouyang, H. Tong, N. Umezawa, Anatase TiO2 single crystals exposed with high-reactive 111 facets toward efficient H2 evolution. Chem. Mater. 25, 405–411 (2013)

    Article  Google Scholar 

  2. Q.J. Xiang, J.G. Yu, Graphene-based photocatalysts for hydrogen generation. J. Phys. Chem. Lett. 4, 753–759 (2013)

    Article  Google Scholar 

  3. C.L. Yu, Q.Z. Fan, Y. Xie, J.C. Chen, Sonochemical fabrication of novel square-shaped F doped TiO2 nanocrystals with enhanced performance in photocatalytic degradation of phenol. J. Hazard. Mater. 237, 38–45 (2012)

    Article  Google Scholar 

  4. K. Iwashina, A. Iwase, Y.H. Ng, Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving Photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 137, 604–607 (2015)

    Article  Google Scholar 

  5. B. Jiang, L.L. Jiang, X.W. Shi, W.C. Wang, G.S. Li, Ag2O/TiO2 nanorods heterojunctions as a strong visible-light photocatalyst for phenol treatment. J. Sol-Gel. Sci. Technol. 73, 314–321 (2015)

    Article  Google Scholar 

  6. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  ADS  Google Scholar 

  7. Y. Li, Z.F. Liu, Y. Wang, Z.C. Liu, J.H. Han, J. Ya, ZnO/CuInS2 core/shell heterojunction nanoarray for photoelectrochemical water splitting. Int. J. Hydrogen Energy 37, 15029–15037 (2012)

    Article  Google Scholar 

  8. D. Chen, Z.F. Liu, M. Zhou, P.D. Wu, J.D. Wei, Enhanced photoelectrochemical water splitting performance of α-Fe2O3 nanostructures modified with Sb2S3 and cobalt phosphate. J. Alloy. Compd. 742, 918–927 (2018)

    Article  Google Scholar 

  9. J.D. Wei, C.L. Zhou, Y. Xin, X.F. Li, L. Zhao, Z.F. Liu, Cooperation effect of heterojunction and co-catalyst in BiVO4/Bi2S3/NiOOH photoanode for improving photoelectrochemical performances. New J. Chem. 42, 19415–19422 (2018)

    Article  Google Scholar 

  10. Y. Wang, R. Shi, J. Lin, Y.F. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 4, 2922–2929 (2011)

    Article  Google Scholar 

  11. J.W. Zhou, M. Zhang, Y.F. Zhu, Preparation of visible light-driven g-C3N4@ZnO hybrid photocatalyst via mechanochemistry. Phys. Chem. Chem. Phys. 16, 17627–17633 (2014)

    Article  Google Scholar 

  12. D.M. Chen, K.W. Wang, D.G. Xiang, R.L. Zong, W.Q. Yao, Y.F. Zhu, Significantly enhancement of photocatalytic performances via core–shell structure of ZnO@mpg-C3N4. Appl. Catal. B 147, 554–561 (2014)

    Article  Google Scholar 

  13. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P.D. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)

    Article  ADS  Google Scholar 

  14. J.R. Xiao, X.L. Zhang, Y.D. Li, A ternary g-C3N4/Pt/ZnO photoanode for efficient photoelectrochemical water splitting. Int. J. Hydrogen Energy 40, 9080–9087 (2015)

    Article  Google Scholar 

  15. Q.Z. Wang, T.J. Niu, L. Wang, FeF2/BiVO4 heterojuction photoelectrodes and evaluation of its photoelectrochemical performance for water splitting. Chem. Eng. J. 337, 506–514 (2018)

    Article  Google Scholar 

  16. N. Son, J.Y. Do, M. Kang, Characterization of core@shell-structured ZnO@Sb2S3 particles for effective hydrogen production from water photo spitting. Ceram. Int. 14, 11250–11259 (2017)

    Article  Google Scholar 

  17. A. Rokade, S. Rondiya, A. Date, V. Sharma, M. Prasad, H. Pathan, S. Jadkar, Electrochemical synthesis of core–shell ZnO/CdS nanostructure for photocatalytic water splitting application. Energy Proc. 110, 121–127 (2017)

    Article  Google Scholar 

  18. D. Chen, Z.F. Liu, Z.G. Guo, W.G. Yan, Y. Xin, Enhancing light harvesting and charge separation of Cu2O photocathodes with spatially separated noble-metal cocatalysts towards highly efficient water splitting. J. Mater. Chem. A 6, 20393–20401 (2018)

    Article  Google Scholar 

  19. K.H. Ng, H.A. Kadir, L.J. Minggu, M.B. Kassim, Stability of WO3/CuO heterojunction photoelectrodes in PEC system. Mater. Sci. Forum 756, 219–224 (2013)

    Article  Google Scholar 

  20. S.B. Wang, C.H. Hsiao, S.J. Chang, Z.Y. Jiao, S.J. Young, ZnO branched nanowires and the p-CuO/n-ZnO heterojunction nanostructured photodetector. IEEE Trans. Nanotechnol. 12, 263–269 (2013)

    Article  ADS  Google Scholar 

  21. W.B. Hou, W.H. Hung, P. Pavaskar, Synthesis of strong light scattering absorber of TiO2-CMK-3/Ag for photocatalytic water splitting under visible light irradiation. ACS Catal. 1, 929–936 (2011)

    Article  Google Scholar 

  22. F. Lin, D. Wang, Z. Jiang, Photocatalytic oxidation of thiophene on BiVO4 with dual co-catalysts Pt and RuO2 under visible light irradiation using molecular oxygen as oxidant. Energy Environ. Sci. 5, 6400–6406 (2012)

    Article  Google Scholar 

  23. B.J. Ma, J.H. Yang, H.X. Han, J.T. Wang, X.H. Zhang, C. Li, Enhancement of photocatalytic water oxidation activity on IrOx-ZnO/Zn2-xGeO4-x-3yN2y catalyst with the solid solution phase junction. J. Phys. Chem. C 114, 12818–12822 (2010)

    Article  Google Scholar 

  24. H. Yan, J. Yang, G. Ma, G.P. Wu, X. Zong, Z.B. Lei, J.Y. Shi, C. Li, Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst. J. Catal. 266, 165–168 (2009)

    Article  Google Scholar 

  25. J.H. Yang, D. Wang, H.X. Han, A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. Acc. Chem. Res. 46, 2355–2364 (2013)

    Article  Google Scholar 

  26. R. Su, R. Tiruvalam, Q. He, Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 6, 6284–6292 (2012)

    Article  Google Scholar 

  27. D. Shiraishi, Y. Tsukamoto, A. Sugano, Platinum nanoparticles supported on anatase titanium dioxide as highly active catalysts for aerobic oxidation under visible light irradiation. ACS Catalysis 2, 1984–1992 (2012)

    Article  Google Scholar 

  28. H.Y. Chen, K.W. Liu, L.F. Hu, A.A. Al-Ghamdi, X.H. Fang, New concept ultraviolet photodetectors. Mater. Today 18, 493–502 (2015)

    Article  Google Scholar 

  29. A. Ahmadivand, N. Pala, D.Ö. Güney, Enhancement of photothermal heat generation by metallodielectric nanoplasmonic clusters. Opt. Express 23, A682–A691 (2015)

    Article  ADS  Google Scholar 

  30. M. Tanzid, A. Ahmadivand, R. Zhang, B. Cerjan, A. Sobhani, Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection. ACS Photon. 5, 3472–3477 (2018)

    Article  Google Scholar 

  31. B.F. Zheng, T. Ouyang, Z. Wang, J.Y. Long, Y.B. Chen, Z.Q. Liu, Enhanced plasmon-driven photoelectrocatalytic methanol oxidation on Au decorated α-Fe2O3 nanotube arrays. Chem. Commun. 69, 9583–9586 (2018)

    Article  Google Scholar 

  32. Z. Kang, X.Q. Yan, Y.F. Wang, Y.G. Zhao, Z.M. Bai, Y.C. Liu, K. Zhao, S.Y. Cao, Y. Zhang, Self-powered photoelectrochemical biosensing platform based on Au NPs@ZnO nanorods array. Nano Res. 9, 344–352 (2016)

    Article  Google Scholar 

  33. D. Chaudhary, S. Singh, V.D. Vankar, N. Khare, A ternary Ag/TiO2/CNT photoanode for efficient photoelectrochemical water splitting under visible light irradiation. Int. J. Hydrogen Energy 12, 7826–7835 (2017)

    Article  Google Scholar 

  34. Z. Liu, Q. Cai, C. Ma, J. Zhang, J.Q. Liu, Photoelectrochemical properties and growth mechanism of varied ZnO nanostructures. New J. Chem. 41, 7947–7952 (2017)

    Article  Google Scholar 

  35. I. Grigioni, K.G. Stamplecoskie, E. Selli, Dynamics of photogenerated charge carriers in WO3/BiVO4 heterojunction photoanodes. J. Phys. Chem. C 119, 20792–20800 (2015)

    Article  Google Scholar 

  36. S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999)

    Article  Google Scholar 

  37. L.Q. Jing, Z.H. Sun, F.L. Yuan, The effects of La and Cu doping on the photogenerated charges over nano-TiO2 and the relationship between photocatalytic activity and photogenerated charges. Sci. Chin. Chem. 36, 53–57 (2006)

    Google Scholar 

  38. J. Luo, L. Ma, T. He, S. Wang, H. Sun, H.J. Fan, TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties. J. Phys. Chem. C 116, 11956–11963 (2012)

    Article  Google Scholar 

  39. E.M.P. Steinmiller, K.S. Choi, Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc. Natl. Acad. Sci. 106, 20633–20636 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Open Foundation of Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy (No. HBSKFZD2017001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifeng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Liu, Z., Tong, Z. et al. Plasmonic Ag nanoparticles and p-type CuO-modified ZnO nanorods for efficient photoelectrochemical water splitting. Appl. Phys. A 125, 451 (2019). https://doi.org/10.1007/s00339-019-2742-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2742-2

Navigation