Skip to main content
Log in

Dependence of device behaviours on oxygen vacancies in ZnSnO thin-film transistors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnSnO thin-film transistors (TFTs) were fabricated by pulsed laser deposition in different oxygen partial pressures. It is found that the oxygen vacancy (VO) contents in ZnSnO films can be readily modified by the oxygen pressures in the growth process. The dependence of behaviors of ZnSnO films and TFTs on relative VO concentration was studied in detail. The relative VO concentration was determined by XPS spectra. The optical band-gap energies of ZnSnO films showed a negative correlation with VO concentration. The strong relation can also be identified for the electrical performances of ZnSnO TFTs. The threshold voltage, subthreshold swing, and density of interfacial trap states increased with the VO concentration in general. The field-effect mobility had a maximum value of 23.6 cm2 V−1 s−1 at oxygen pressure of 6 Pa, which is ascribed to the competitive factors of VO at different chemical states. It is expected that this work would gain a better understanding of oxygen vacancy in ZnSnO TFTs for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24(22), 2945 (2012)

    Article  Google Scholar 

  2. W. Yan, S. Yue, J. Lu, X. Li, G. Yu, R. Lu, Y. Zeng, L. Chen, Z. Ye, IEEE Trans. Electron Devices 63(6), 2412 (2016)

    Article  ADS  Google Scholar 

  3. M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10, 382 (2011)

    Article  ADS  Google Scholar 

  4. T. Kamiya, K. Nomura, H. Hosono, Sci. Technol. Adv. Mater. 11(4), 044305 (2010)

    Article  Google Scholar 

  5. K. Xu, Y. Lu, K. Takei, Adv. Mater. Technol. 4(3), 1800628 (2019)

    Article  Google Scholar 

  6. R. Wang, D. Zhang, Y. Xiong, X. Zhou, C. Liu, W. Chen, W. Wu, L. Zhou, M. Xu, L. Wang, L. Liu, J. Peng, Y. Ma, Y. Cao, ACS Appl. Mater. Interfaces. 10(21), 17519 (2018)

    Article  Google Scholar 

  7. J.Y. Kwon, K.S. Son, J.S. Jung, T.S. Kim, M.K. Ryu, K.B. Park, B.W. Yoo, J.W. Kim, Y.G. Lee, K.C. Park, S.Y. Lee, J.M. Kim, IEEE Electron Device Lett. 29(12), 1309 (2008)

    Article  ADS  Google Scholar 

  8. M.K. Choi, J. Yang, T. Hyeon, D.-H. Kim, Adv. Mater. 2(1), 10 (2018)

    Google Scholar 

  9. C.I. Yang, T.C. Chang, P.Y. Liao, L.H. Chen, B.W. Chen, W.C. Chou, G.F. Chen, S.C. Lin, C.Y. Yeh, C.M. Tsai, M.C. Yu, S. Zhang, IEEE J. Electron Devices Soc. 6, 685 (2018)

    Article  Google Scholar 

  10. Y.C. Zhang, G. He, C. Zhang, L. Zhu, B. Yang, Q.B. Lin, X.S. Jiang, J. Alloys Compd. 765, 791 (2018)

    Article  Google Scholar 

  11. C.X. Huang, J. Li, Y.Z. Fu, J.H. Zhang, X.Y. Jiang, Z.L. Zhang, IEEE Trans. Electron Devices 63(9), 3552 (2016)

    Article  ADS  Google Scholar 

  12. D.C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, Thin Solid Films 516(17), 5894 (2008)

    Article  ADS  Google Scholar 

  13. D.-Y. Zhong, J. Li, C.-Y. Zhao, C.-X. Huang, J.-H. Zhang, X.-F. Li, X.-Y. Jiang, Z.-L. Zhang, IEEE Trans. Electron Devices 65(2), 520 (2018)

    Article  ADS  Google Scholar 

  14. E. Chong, K.C. Jo, S.Y. Lee, Appl. Phys. Lett. 96(15), 152102 (2010)

    Article  ADS  Google Scholar 

  15. Z.Z. Ye, S.L. Yue, J. Zhang, X.F. Li, L.X. Chen, J.G. Lu, IEEE Trans. Electron Devices 63(9), 3547 (2016)

    Article  ADS  Google Scholar 

  16. H.-Y. Liu, C.-C. Hung, W.-C. Hsu, IEEE Electron Device Lett. 39(10), 1520 (2018)

    Google Scholar 

  17. H.-W. Jang, H.-R. Kim, J.-H. Yang, C.-W. Byun, C.-S. Kang, S. Kim, S.-M. Yoon, Jpn. J. Appl. Phys. 57(9), 090313 (2018)

    Article  ADS  Google Scholar 

  18. J.Q. Song, L.X. Qian, P.T. Lai, IEEE Trans. Device Mater. Reliab. 18(3), 333 (2018)

    Article  Google Scholar 

  19. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004)

    Article  ADS  Google Scholar 

  20. Q.J. Jiang, L.S. Feng, C.J. Wu, R.J. Sun, X.F. Li, B. Lu, Z.Z. Ye, J.G. Lu, Appl. Phys. Lett. 106(5), 053503 (2015)

    Article  ADS  Google Scholar 

  21. Q.J. Jiang, J.G. Lu, J.P. Cheng, X.F. Li, R.J. Sun, L.S. Feng, W. Dai, W.C. Yan, Z.Z. Ye, Appl. Phys. Lett. 105(13), 132105 (2014)

    Article  ADS  Google Scholar 

  22. L. Feng, G. Yu, X. Li, J. Zhang, Z. Ye, J. Lu, IEEE Trans. Electron Devices 64(1), 206 (2017)

    Article  ADS  Google Scholar 

  23. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, D.A. Keszler, Appl. Phys. Lett. 86(1), 013503 (2005)

    Article  ADS  Google Scholar 

  24. W.B. Jackson, R.L. Hoffman, G.S. Herman, Appl. Phys. Lett. 87(19), 193503 (2005)

    Article  ADS  Google Scholar 

  25. Y.S. Rim, D.L. Kim, W.H. Jeong, H.J. Kim, Appl. Phys. Lett. 97(23), 233502 (2010)

    Article  ADS  Google Scholar 

  26. S. Yue, J. Lu, R. Lu, S. Li, X. Li, J. Zhang, L. Chen, Z. Ye, Appl. Phys. Lett. 113(1), 013504 (2018)

    Article  ADS  Google Scholar 

  27. J. Li, Y.-Z. Fu, C.-X. Huang, J.-H. Zhang, X.-Y. Jiang, Z.-L. Zhang, Appl. Phys. Lett. 108(14), 143505 (2016)

    Article  ADS  Google Scholar 

  28. A. Ikeda, M. Matsumoto, S. Ogura, T. Okano, K. Fukutani, J. Chem. Phys. 138(12), 6 (2013)

    Article  Google Scholar 

  29. K. Xu, H. Yan, C.F. Tan, Y. Lu, Y. Li, G.W. Ho, R. Ji, M. Hong, Adv. Opt. Mater. 6(7), 1701167 (2018)

    Article  Google Scholar 

  30. K. Xu, C. Zhang, R. Zhou, R. Ji, M. Hong, Opt. Express 24(10), 10352 (2016)

    Article  ADS  Google Scholar 

  31. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158(1–2), 134 (2000)

    Article  ADS  Google Scholar 

  32. P. Wu, J. Zhang, J. Lu, X. Li, C. Wu, R. Sun, L. Feng, Q. Jiang, B. Lu, X. Pan, Z. Ye, IEEE Trans. Electron Devices 61(5), 1431 (2014)

    Article  ADS  Google Scholar 

  33. K.-H. Lim, K. Kim, S. Kim, S.Y. Park, H. Kim, Y.S. Kim, Adv. Mater. 25(21), 2994 (2013)

    Article  Google Scholar 

  34. X.F. Chen, G. He, M. Liu, J.W. Zhang, B. Deng, P.H. Wang, M. Zhang, J.G. Lv, Z.Q. Sun, J. Alloys Compd. 615, 636 (2014)

    Article  Google Scholar 

  35. A.J. Leenheer, J.D. Perkins, M.F.A.M. van Hest, J.J. Berry, R.P. O’Hayre, D.S. Ginley, Phys. Rev. 77(11), 115215 (2008)

    Article  Google Scholar 

  36. W. Körner, P. Gumbsch, C. Elsässer, Phys. Rev. B 86(16), 165210 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China under Grant No. 2017YFB0404703.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianguo Lu or Zhizhen Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4693 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Lu, J., Lu, Y. et al. Dependence of device behaviours on oxygen vacancies in ZnSnO thin-film transistors. Appl. Phys. A 125, 362 (2019). https://doi.org/10.1007/s00339-019-2646-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2646-1

Navigation