Skip to main content
Log in

Temperature sensitivity analysis of vertical tunneling based dual metal Gate TFET on analog/RF FOMs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we present a rigorous numerical simulation study on temperature sensitivity for tunnel field effect transistor (TFET). The presented temperature sensitivity analysis is studied on different digital, analog and RF figure of merits for conventional TFETs. In addition, sensitivities of the conventional TFETs are compared with proposed vertical tunneling-based TFET (V-DMGTFET) and detailed discussion is presented for the same. In comparative study, we observed that proposed V-DMGTFET is less sensitive to temperature variations compared to the conventional TFETs. This indicates that proposed V-DMGVTFET is more reliable to use in low power application at high temperatures compared to the conventional TFET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.M. Ionescu, H. Riel, Tunnel field effect transistors as energy efficient electronic switches. Nature 479, 329–337 (2011)

    Article  ADS  Google Scholar 

  2. N. Guenifi, S.B. Rahi, T. Ghodbane, Rigorous study of double gate tunneling field effect transistor structure based on silicon. Mater. Focus 7, 1–7 (2018)

    Article  Google Scholar 

  3. M. R. Salehi, E. Abiri, S. E. Hosseini and B. Dorostkar, Analysis and optimization of tunnel FET with band gap engineering. In: 1st Iranian Conference on Electrical Engineering (ICEE), Iran, May 2013

  4. P. Jain, P. Rastogi, C. Yadav, A. Agarwal, Y.S. Chauhan, Band-to-band tunneling in Γ valley for Ge source lateral tunnel field effect transistor: thickness scaling. J. Appl. Phys. 122(1), 0145021–0145027 (2017)

    Article  Google Scholar 

  5. K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron Dev. 54(7), 1725–1733 (2007)

    Article  ADS  Google Scholar 

  6. S.B. Rahi, P. Asthana, S. Gupta, Heterogate junctionless tunnel field-effect transistor: future of low-power devices. J. Comput. Electron. 16(1), 30–38 (2017)

    Article  Google Scholar 

  7. P.K. Asthana, Y. Goswami, S. Basak, S.B. Rahi, B. Ghosh, Improved performance of a junctionless tunnel field effect transistor with a Si and SiGe heterostructure for ultra low power applications. RSC Adv. 60(5), 48779–48785 (2015)

    Article  Google Scholar 

  8. N. Sharma, S.S. Chauhan, Enhancing Analog Performance suppression of subthreshold swing using hetero-junctionless double gate TFETs. Superlattices Microstruct. 112, 257–261 (2017)

    Article  ADS  Google Scholar 

  9. S.B. Rahi, B. Ghosh, High-k double gate junctionless tunnel FET with a tunable bandgap. RSC Adv. 67(5), 54544–54550 (2015)

    Article  Google Scholar 

  10. M.J. Kumar, S. Janardhanan, Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Dev. 60(10), 3285–3290 (2013)

    Article  ADS  Google Scholar 

  11. N. Sharma, S.S. Chauhan, Dual metal drain Ge-source dopingless TFET with enhanced turn-ON steep subthreshold swing and high ON-current. Electron. Lett. 53(14), 960–962 (2017)

    Article  ADS  Google Scholar 

  12. Y. Wang, W.H. Zhang, C.H. Yu, F. Cao, Sandwich double gate vertical tunneling field-effect transistor. Superlattices Microstruct. 93, 138–143 (2016)

    Article  ADS  Google Scholar 

  13. Y.J. Yoon, S.Y. Woo, J.H. Seo, Design optimization of vertical double-gate tunneling field-effect transistors. J. Kor. Phys. Soc. 61(10), 1679–1682 (2012)

    Article  ADS  Google Scholar 

  14. X. Wang, W. Cho, H.W. Baac, D. Seo, I.H. Cho, Optimization of double-gate vertical channel tunneling field effect transistor (DVTFET) with dielectric sidewall. J. Semicond. Technol. Sci. 17(2), 192–198 (2017)

    Google Scholar 

  15. S.S. Chauhan, Design of double gate vertical tunnel field effect transistor using HDB and its performance estimation. Superlattices Microstruct. 117, 1–8 (2018)

    Article  ADS  Google Scholar 

  16. N. Paras, S.S. Chauhan, Vertical tunneling based tunnel field effect transistor with workfunction engineered hetero-gate to enhance DC characteristics. J. Nanoelectron. Optoelectron. 14(1), 50–53 (2019)

    Article  Google Scholar 

  17. M.H. Chiang, J.N. Lin, K. Kim, C.T. Chuang, Random dopant fluctuation in limited-width FinFET technologies. IEEE Trans. Electron Dev. 54(8), 2055–2060 (2007)

    Article  ADS  Google Scholar 

  18. C. Shan, Y. Wang, M.T. Bao, A charge-plasma-based transistor with induced graded channel for enhanced analog performance. IEEE Trans. Electron Dev. 63(6), 2275–2281 (2016)

    Article  ADS  Google Scholar 

  19. S.B. Rahi, B. Ghosh, B. Bishnoi, Temperature effect on hetero structure junctionless tunnel FET. J. Semicond. 36(3), 0340021–0340025 (2015)

    Article  Google Scholar 

  20. M. Born, K.K. Bhuwalka, M. Schindler, U. Abilene, M. Schmidt, T. Sulima, I. Eisele, Tunnel FET: a CMOS device for high temperature applications. In: 25th International Conference on Microelectronics, Serbia, pp. 124–127 (2006)

  21. P.F. Guo, L.T. Yang, Y. Yang, L. Fan, G.Q. Han, G.S. Samudra, Y.C. Yeo, Tunneling field-effect transistor: effect of strain and temperature on tunneling current. IEEE Electron Dev. Lett. 30, 981–983 (2009)

    Article  ADS  Google Scholar 

  22. J. Wan, C.L. Royer, A. Zaslavsky, S. Cristoloveanu, SOI TFETs: Suppression of ambipolar leakage and low-frequency noise behavior. In: Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 341–344 (2010)

  23. T. Nirschl, P-F. Wang, W. Hansch, D. Schmitt-Landsiedel, The tunneling field effect transistors (TFET): the temperature dependence, the simulation model, and its application. In: Proceedings of the 2004 International Symposium on Circuits and Systems, pp. 713–716 (2004)

  24. H. Schmid, M.T. Bjrk, J. Knoch, S. Karg, H. Riel, W. Riess, Doping limits of grown in situ doped silicon nanowires using phosphine. Nano Lett. 57(4), 820–826 (2009)

    Google Scholar 

  25. R. Asra, M. Shrivastava, K.V.R.M. Murali, R.K. Pandey, H. Gossener, V.R. Rao, A tunnel FET for VDD scaling below 0.6 V with a CMOS comparable performance. IEEE Trans. Electron Dev. 58(7), 1855–1863 (2011)

    Article  ADS  Google Scholar 

  26. W. Long, H. Ou, J.M. Kuo, K.K. Chin, Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Dev. 46(5), 865–870 (1999)

    Article  ADS  Google Scholar 

  27. A. Goel, S.K. Gupta, K. Roy, Asymmetric drain spacer extension (ADSE) FinFETs for low power and robust SRAMs. IEEE Trans. Electron Dev. 58(2), 296–308 (2011)

    Article  ADS  Google Scholar 

  28. Sentaurus Device User Guide, Synopsys Inc., Mountain View (2013)

  29. J. Wan, C.L. Royer, A. Zaslavsky, S. Cristoloveanu, Tunneling FETs on SOI: Suppression of ambipolar leakage, low-frequency noise behavior, and modeling. Solid-State Electron. 65–66, 226–233 (2011)

    Article  ADS  Google Scholar 

  30. Y. Wang, Y.-F. Wang, F. Cao, Asymmetric dual-gate tunneling FET with improved performance. Superlattices Microstruct. 91, 216–224 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Paras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paras, N., Chauhan, S.S. Temperature sensitivity analysis of vertical tunneling based dual metal Gate TFET on analog/RF FOMs. Appl. Phys. A 125, 316 (2019). https://doi.org/10.1007/s00339-019-2621-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2621-x

Navigation