Skip to main content
Log in

Enhanced thermoelectric properties of the Lu-doped and CNT-dispersed Bi2Te3 alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bi2Te3 and Lutetium-doped Lu0.1Bi1.9Te3 nanopowders were prepared by the hydrothermal method. Different amounts of carbon nanotubes (CNTs) were dispersed into Lu0.1Bi1.9Te3 nanopowders and hot pressed into bulk samples with nominal chemical formula of Lu0.1Bi1.9Te3 + xwt% CNT (x = 0, 0.05, 0.1, 0.5, 1) to assess the effects of lutetium doping and CNT dispersing on the thermoelectric properties. The electrical resistivity decreased because of the increase of the carrier concentration and carrier mobility at a low CNTs content. Herein, a small amount of CNTs were used as conducting filler to provide a free path of carriers which would lead to an increase of carrier mobility, though a large number of CNTs mainly played an energy-filtering effect. The thermal conductivity of Lu0.1Bi1.9Te3 + xwt% CNT nanocomposite showed an evident decrease, which resulted from the enhanced phonon scattering by the point defects caused by Lu doping and the interfaces between Lu0.1Bi1.9Te3 and CNTs. Due to the decrease in the electrical resistivity and thermal conductivity, the figure of merit (ZT) of Lu0.1Bi1.9Te3 + 0.05 wt% CNT nanocomposite was higher than that of Bi2Te3 and Lu0.1Bi1.9Te3 when the temperature was below 473 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457–1461 (2008)

    Article  ADS  Google Scholar 

  2. Z.-G. Chen, X. Shi, L.-D. Zhao, J. Zou, Prog. Mater Sci. 97, 283–346 (2018)

    Article  Google Scholar 

  3. L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, M.G. Kanatzidis, Science 351, 141–144 (2016)

    Article  ADS  Google Scholar 

  4. L. Yang, Z.-G. Chen, M.S. Dargusch, J. Zou, Adv. Energy Mater. 8, 1701797 (2018)

    Article  Google Scholar 

  5. R. Cao, H. Song, W. Gao, E. Li, X. Li, X. Hu, J. Alloy. Compd. 727, 326–331 (2017)

    Article  Google Scholar 

  6. Y. Chen, R. Ma, K. Wang, F. Gao, X. Hu, H. Song, Int. J. Mod. Phys. B 29(14), 1550082 (2015)

    Article  ADS  Google Scholar 

  7. W. Gao, G. Wang, X. Li, X. Hu, H. Song, Int. J. Mod. Phys. B 31(6), 1750042 (2017)

    Article  ADS  Google Scholar 

  8. F. Wu, Q. He, M. Tang, H. Song, Int. J. Mod. Phys. B 32(10), 1850123 (2018)

    Article  ADS  Google Scholar 

  9. Z. Zhu, Y. Zhang, H. Song, X.-J. Li, Appl. Phys. A 124, 747 (2018)

    Article  ADS  Google Scholar 

  10. Z. Zhu, Y. Zhang, H. Song, X.-J. Li, Appl. Phys. A 124, 871 (2018)

    Article  ADS  Google Scholar 

  11. L. Yao, F. Wu, X.X. Wang, R.J. Cao, X.J. Li, X. Hu, H.Z. Song, J. Electron. Mater. 45(6), 3053–3058 (2016)

    Article  ADS  Google Scholar 

  12. R. Venkatasubramanian, E. Siivola, T.C.B. O’Quinn. Nature 413, 597–602 (2001)

    Article  ADS  Google Scholar 

  13. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229–2232 (2002)

    Article  ADS  Google Scholar 

  14. F. Wu, H. Song, F. Gao, W. Shi, J. Jia, X. Hu, J. Electron. Mater. 42(6), 1140–1145 (2013)

    Article  ADS  Google Scholar 

  15. W. Gao, H. Chai, F. Wu, X. Li, X. Hu, H. Song, Ceram. Int. 43(7), 5723–5727 (2017)

    Article  Google Scholar 

  16. R. Cao, E. Li, Q. Hu, Z. Zhu, Y. Zhang, X. Li, X. Hu, H. Song, Appl. Phys. A 124(10), 669 (2018)

    Article  ADS  Google Scholar 

  17. Q. Hu, K. Wang, Y. Zhang, X. Li, H. Song, Mater. Res. Express 5(4), 045510 (2018)

    Article  ADS  Google Scholar 

  18. Q. Hu, Z. Zhu, Y. Zhang, X. Li, H. Song, Y. Zhang, J. Mater. Chem. A 6, 23417–23424 (2018)

    Article  Google Scholar 

  19. F. Gao, S.L. Leng, Z. Zhu, X.J. Li, X. Hu, H.Z. Song, J. Electron. Mater. 47(4), 2454–2460 (2018)

    Article  ADS  Google Scholar 

  20. H. Hazama, Y. Masuoka, H. Yamamoto, H. Suto, Y. Kinoshita, M. Ishikiriyama, R. Asahi, J. Alloy. Compd. 726, 578–586 (2017)

    Article  Google Scholar 

  21. E. Lee, J. Ko, J.-Y. Kim, W.-S. Seo, S.-M. Choi, K.H. Lee, W. Shim, W. Lee, J. Mater. Chem. C 4(6), 1313–1319 (2016)

    Article  Google Scholar 

  22. J. Martin, L. Wang, L. Chen, G.S. Nolas, Phys. Rev. B 79(11), 115311 (2009)

    Article  ADS  Google Scholar 

  23. Y. Zhang, X.L. Wang, W.K. Yeoh, R.K. Zheng, C. Zhang, Appl. Phys. Lett. 101(3), 031909 (2012)

    Article  ADS  Google Scholar 

  24. F. Ren, H. Wang, P.A. Menchhofer, J.O. Kiggans, Appl. Phys. Lett. 103(22), 221907 (2013)

    Article  ADS  Google Scholar 

  25. C. Li, X. Qin, Y. Li, D. Li, J. Zhang, H. Guo, H. Xin, C. Song, J. Alloy. Compd. 661, 389–395 (2016)

    Article  Google Scholar 

  26. V.D. Blank, S.G. Buga, V.A. Kulbachinskii, V.G. Kytin, V.V. Medvedev, M.Y. Popov, P.B. Stepanov, V.F. Skok, Phys. Rev. B 86(7), 075416 (2012)

    Article  ADS  Google Scholar 

  27. Y.-C. Lai, H.-J. Tsai, C.-I. Hung, H. Fujishiro, T. Naito, W.K. Hsu, Phys. Chem. Chem. Phys. 17(12), 8120–8124 (2015)

    Article  Google Scholar 

  28. B. Khasimsaheb, N.K. Singh, S. Bathula, B. Gahtori, D. Haranath, S. Neeleshwar, Curr. Appl. Phys. 17(2), 306–313 (2017)

    Article  ADS  Google Scholar 

  29. S. Kumar, D. Chaudhary, P.K. Dhawan, R.R. Yadav, N. Khare, Ceram. Int. 43(17), 14976–14982 (2017)

    Article  Google Scholar 

  30. Y. Pan, G.J. Weng, S.A. Meguid, W.S. Bao, Z.-H. Zhu, A.M.S. Hamouda, J. Appl. Phys. 110(12), 123715 (2011)

    Article  ADS  Google Scholar 

  31. Y.B. Chen, X.L. Cao, R.X. Ma, F. Gao, X. Hu, H.Z. Song, J. Electron. Mater. 44(10), 3545–3549 (2015)

    Article  ADS  Google Scholar 

  32. F. Gao, Q. He, F. Wu, D. Yang, X. Hu, H. Song, Mod. Phys. Lett. B 29(26), 1550154 (2015)

    Article  ADS  Google Scholar 

  33. N.V. Nong, N. Pryds, S. Linderoth, M. Ohtaki, Adv. Mater. 23(21), 2484–2490 (2011)

    Article  Google Scholar 

  34. J. Yang, F. Wu, Z. Zhu, L. Yao, H. Song, X. Hu, J. Alloy. Compd. 619, 401–405 (2015)

    Article  Google Scholar 

  35. K.T. Kim, S.Y. Choi, E.H. Shin, K.S. Moon, H.Y. Koo, G.-G. Lee, G.H. Ha, Carbon 52, 541–549 (2013)

    Article  Google Scholar 

  36. Q. Lognoné, F. Gascoin, J. Alloy. Compd. 635, 107–111 (2015)

    Article  Google Scholar 

  37. M. Cutler, J.F. Leavy, R.L. Fitzpatrick, Phys. Rev. 133(4A), A1143–A1152 (1964)

    Article  ADS  Google Scholar 

  38. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Appl. Phys. Lett. 86(6), 062111 (2005)

    Article  ADS  Google Scholar 

  39. H. Bark, J.-S. Kim, H. Kim, J.-H. Yim, H. Lee, Curr. Appl. Phys. 13, S111–S114 (2013)

    Article  Google Scholar 

  40. S.V. Faleev, F. Léonard, Phys. Rev. B 77(21), 214304 (2008)

    Article  ADS  Google Scholar 

  41. Y. Pan, U. Aydemir, F.H. Sun, C.F. Wu, T.C. Chasapis, G.J. Snyder, J.F. Li, Adv. Sci. 4, 1700259 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 61774136), the China and Henan Postdoctoral Science Foundation (Grant No. 2018M630833), and the Key Programs for Science and Technology Development of Henan Province (Grant No. 182102210183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhang Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, R., Zhu, Z., Li, XJ. et al. Enhanced thermoelectric properties of the Lu-doped and CNT-dispersed Bi2Te3 alloy. Appl. Phys. A 125, 126 (2019). https://doi.org/10.1007/s00339-019-2427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2427-x

Navigation