Skip to main content
Log in

Effect of Zr substitution on the microstructure and magnetic properties of CuFeO2 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To specify the modulating mechanism of Zr substitution on the microstructure and magnetic properties of the delafossite type oxides CuFe1−xZrxO2 (x = 0–0.10), the multiferroic ceramics are synthesized by the solid-state reaction method. The microstructure and properties of the obtained samples are characterized by X-ray diffraction, scanning electron microscope, Raman spectroscopy, positron annihilation lifetime spectra and physical property measurement system. The XRD results indicate that all samples form delafossite structure, and Zr4+ substitution induces the shift of the main diffraction peaks. SEM measurements demonstrate that Zr substitution suppresses the grain growth. Raman spectra results show that Zr substitution changes the degree of polarization and intragranular stress for the CuFe1−xZrxO2 samples. Positron annihilation results suggest that vacancy-type defects exist in all samples, and the concentration and size of defects are influenced significantly by Zr substitution. The M–T curves of all samples display two successive magnetic transition temperatures TN1 and TN2, and the substitution of Zr for Fe tends to suppress the low ferromagnetic interactions in the magnetic structure. Simultaneously, all samples exhibit macroscopic weak ferromagnetic behavior at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Elkhouni, M. Amami, C.V. Colin, A.B. Salah, Mater. Res. Bull. 53, 15 (2014)

    Article  Google Scholar 

  2. K. Mori, M. Hachisu, T. Yamazaki, Y. Ichiyanagi, J. Appl. Phys. 117, 17C756 (2015)

    Article  Google Scholar 

  3. L.R. Shi, Z. Jin, B.R. Chen, N.M. Xia, H.K. Zuo, Y.S. Wang, Z.W. Ouyang, Z.C. Xia, J. Magn. Magn. Mater. 372, 7 (2014)

    Article  ADS  Google Scholar 

  4. S. Seki, Y. Yamasaki, Y. Shiomi, S. Iguchi, Y. Onose, Y. Tokura, Phys. Rev. B 75, 100403 (2007)

    Article  ADS  Google Scholar 

  5. Y. Narumi, T. Nakamura, H. Ikeno, N. Terada, T. Morioka, K. Saito, H. Kitazawa, K. Kindo, H. Nojiri, J. Phys. Soc. Jpn. 85, 114705 (2016)

    Article  ADS  Google Scholar 

  6. T. Elkhoun, M. Amami, E.K. Hlil, A.B. Salah, J. Supercond. Nov. Magn. 28, 1439 (2015)

    Article  Google Scholar 

  7. B. Kundys, A. Maignan, D. Pelloquin, C. Simon, Solid. State. Sc. 11, 1035 (2009)

    Article  ADS  Google Scholar 

  8. N.Terada, T.Nakajima, S.Mitsuda, H., K. Kitazawa, N. Kaneko, Metoki, Phys. Rev. B 78, 014101–014101 (2008)

    Article  ADS  Google Scholar 

  9. K. Hayashi, R. Fukatsu, T. Nozaki, Y. Miyazaki, T. Kajitani, Phys. Rev. B 87, 064418 (2013)

    Article  ADS  Google Scholar 

  10. Y. Hongaromkij, C. Rudradawong, C. Ruttanapun, J. Mater. Sci. Mater. Electron. 27, 6438 (2016)

    Article  Google Scholar 

  11. G.F. Cheng, W. Liu, Z.W. Liu, X.S. Wu, J. Magn. Magn. Mater. 382, 179 (2015)

    Article  ADS  Google Scholar 

  12. O. Cojocaru-Miredin, P.-P. Choi, D. Abou-Ras, S.S. Schmidt, R. Caballero, D. Raabe, IEEE J. Photovolt. 1, 207 (2011)

    Article  Google Scholar 

  13. N. Terada, D.D. Khalyavin, P. Manuel, T. Osakabe, P.G. Radaelli, H. Kitazawa, Phys. Rev. B 89, 220403 (2014)

    Article  ADS  Google Scholar 

  14. N.P. Salke, K. Kamali, T.R. Ravindran, G. Balakrishnan, R. Rao, Vib. Spectrosc. 81, 112 (2015)

    Article  Google Scholar 

  15. P. Shojan, A. Pavunny, R.S. Kumar, Katiyar, J. Appl. Phys. 107, 013522 (2010)

    Article  ADS  Google Scholar 

  16. T. Elkhoun, M. Amami, E.K. Hlil, A. Ben Salah, J. Supercond. Nov. Magn. 28, 1439 (2015)

    Article  Google Scholar 

  17. Y.H. Chuai, B. Hu, Y.D. Li, H.Z. Shen, C.T. Zheng, Y.D. Wang, J. Alloy. Compd. 627, 299 (2015)

    Article  Google Scholar 

  18. T. Li, J. Chen, D.W. Liu, Z.X. Z hang, Z.P. Chen, Z. Li, X.Z. Cao, B.Y. Wang, Ceram. Int. 40, 9061 (2014)

    Article  Google Scholar 

  19. T. Li, Y.C. Xue, Z. Chen, F.G. Chang, Mater. Sci. Eng. B. 158, 58 (2009)

    Article  Google Scholar 

  20. S. Fu, Y. Zhang, H. Liu, D. Yi, B. Wang, Y. Jiang, Z. Chen, N. Qi, J. Mater. Sci. Technol. 34, 335 (2018)

    Article  Google Scholar 

  21. R.Z. Xue, Z.P. Chen, Y.C. Xue, H.Y. Dai, T. Li, J. Chen, J. Supercond. Nov. Magn. 27, 1201 (2013)

    Article  Google Scholar 

  22. W.N. Ge, X.N. Li, J.P. Xu, S.J. Huang, J.D. Liu, Z. Zhu, Z.P. Fu, Y.L. Lu, B.J. Ye, Nucl. Instrum. Methods B. 394, 61 (2017)

    Article  ADS  Google Scholar 

  23. H.F. He, X.F. Li, Z.Q. Chen, Y. Zheng, D.W. Yang, X.F. Tang, J. Phys. Chem. C 118, 2389 (2014)

    Article  Google Scholar 

  24. Y.W. Zhou, W.W. Xu, J.J. Li, C.S. Yin, Y. Liu, B. Zhao, Z.Q. Chen, C.Q. He, W.F. Mao, K. Ito, J. Appl. Phys. 123, 025706 (2018)

    Article  ADS  Google Scholar 

  25. H.Y. Dai, L.T. Gu, X.Y. Xie, T. Li, Z.P. Chen, Z.J. Li, J. Mater Sci. Mater. Electron. 29, 2275 (2017)

    Article  Google Scholar 

  26. R.Z. Xue, G.Y. Zhao, J. Chen, Z.P. Chen, D.W. Liu, Mater. Res. Bull. 76, 124 (2016)

    Article  Google Scholar 

  27. H. Dai, F.J. Ye, Z.P. Chen, T. Li, D.W. Liu, J. Alloy. Compd. 734, 60 (2018)

    Article  Google Scholar 

  28. S. Pattanayak, R.N.P. Choudhary, P.R. Das, S.R. Shannigrahi, Ceram. Int. 40, 7983 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Project nos. 11675149, 11775192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenping Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Ye, F., Li, T. et al. Effect of Zr substitution on the microstructure and magnetic properties of CuFeO2 ceramics. Appl. Phys. A 125, 43 (2019). https://doi.org/10.1007/s00339-018-2354-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2354-2

Navigation