Skip to main content
Log in

Electro-optical and dielectric performance analysis: the influence of azo dye on polymer/LC composite structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, electro-optical and dielectric properties of polymer/LC doped with azo dye methyl red (MR) were investigated. Norland optical adhesive (NOA65) and nematic liquid-crystal (E63-coded nematic liquid crystal) materials were used to compose of polymer/LC composite structure. A doping agent ratio of MR was chosen 1% wt/wt in polymer/LC composite structure. Dielectric measurements of the obtained samples were held between 10 Hz and 10 MHz at room temperature using dielectric/impedance analyzer. Physical parameters such as dielectric permittivity, dielectric anisotropy, electric modulus, loss tangent, relaxation frequency, relaxation time, threshold voltage, and splay elastic constant were obtained from experimental data. Optical bandgap values of polymer/LC and polymer/LC/MR composite structures were estimated using UV spectroscopy technique. Polymer/LC composite structures’ electro-optical properties were affected the MR dispersal which was reduced the anchoring force between polymer and LC molecules; therefore, threshold voltage and splay elastic constant decreased. In addition, dispersal of MR caused a decrease in optical bandgap values of polymer/LC composite structures. Due to the increase in charge density caused by MR, the value of the current passing through the polymer/LC composite structures increased as well as its dependence on voltage. Results show that MR dispersal enhanced electro-optical and dielectric properties of polymer/LC composite structures and makes it suitable to design new based on optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Gökçen, O. Köysal, Mater. Chem. Phys. 129, 1142–1145 (2011)

    Article  Google Scholar 

  2. D. Jayoti, P. Malik, A. Singh, J. Mol. Liq. 225, 456–461 (2017)

    Article  Google Scholar 

  3. R. Fatayati, A. Kusumaatmaja, Y. Yusuf, Jpn. J. Appl. Phys. 57, 1–3 (2018) (088005)

    Article  Google Scholar 

  4. M. Yıldırım, A. Allı, G. Önsal, N. Gök, O. Köysal, Compos. Part B 117, 43–48 (2017)

    Article  Google Scholar 

  5. M.A. Mumin, W.Z. Xu, P.A. Charpentier, Nanotechnology 26, 1–14 (2015) (315702)

    Article  Google Scholar 

  6. H. Souri, J. Yu, H. Jeon, J.W. Kim, C.M. Yang, N.H. You, B.J. Yang, Carbon 120, 427–437 (2017)

    Article  Google Scholar 

  7. G. Li, Z.K. Tan, D. Di, M.L. Lai, L. Jiang, J.H.W. Lim, R.H. Friend, N.C. Greenham, Nano Lett. 15, 2640–2644 (2015)

    Article  ADS  Google Scholar 

  8. A. Demir, O. Köysal, Philos. Mag. 96(22), 2362–2371 (2016)

    Article  ADS  Google Scholar 

  9. A. Facchetti, Mater. Today 16(4), 123–132 (2013)

    Article  Google Scholar 

  10. A.C. Mayer, S.R. Scully, B.E. Hardin, M.W. Rowell, M.D. McGehee, Mater. Today 10(11), 28–33 (2007)

    Article  Google Scholar 

  11. H.H.M. Elkhalgi, S. Khandka, U.B. Singh, K.L. Pandey, R. Dabrowski, R. Dhar, Liq. Cryst. 45(12), 1795–1801 (2018)

    Article  Google Scholar 

  12. R. Mishra, J. Hazarika, A. Hazarika, B. Gogoi, R. Dubey, D. Bhattacharjee, K.N. Singh, P.R. Alapati, Liq. Cryst. 45(11), 1661–1671 (2018)

    Article  Google Scholar 

  13. O. Köysal, Synth. Met. 160, 1097–1100 (2010)

    Article  Google Scholar 

  14. M. Yıldırım, O. Köysal, G. Önsal, E. Gümüş, J. Mol. Liq. 223, 868–872 (2016)

    Article  Google Scholar 

  15. Y. Liu, Y. Zhang, Y. Tang, Z. Zhao, Q. Wang, G. Jia, Results Phys. 9, 1537–1542 (2018)

    Article  ADS  Google Scholar 

  16. U.B. Singh, R. Dhar, R. Dabrowski, P.M. Pandey, Liq. Cryst. 40, 774–782 (2013)

    Article  Google Scholar 

  17. R. Verma, M. Mishra, R. Dhar, R. Dabrowski, J. Mol. Liq. 221, 190–196 (2016)

    Article  Google Scholar 

  18. R. Verma, M. Mishra, R. Dhar, R. Dabrowski, Liq. Cryst. 44(3), 544–556 (2017)

    Article  Google Scholar 

  19. G. Pathak, K. Agrahari, G. Yadav, A. Srivastava, O. Strzezysz, R. Manohar, Appl. Phys. A 124(463), 1–9 (2018)

    Google Scholar 

  20. R. Manohar, S. Manohar, V.S. Chandel, Mater. Sci. Appl. 2, 839–847 (2011)

    Google Scholar 

  21. S.K. Gupta, D.P. Singh, R. Manohar, S. Kumar, Curr. Appl. Phys. 16, 79–82 (2016)

    Article  ADS  Google Scholar 

  22. N. Yadav, S. Kumar, R. Dhar, RSC Adv. 5, 78823–78832 (2015)

    Article  Google Scholar 

  23. M. Schadt, Liq. Cryst. 42(5–6), 646–652 (2015)

    Google Scholar 

  24. Y.-H. Lin, Y.-J. Wang, V. Reshetnyak, Liq. Cryst. Rev. 5(2), 111–143 (2017)

    Article  Google Scholar 

  25. I. Abdulhalim, Liq. Cryst. Today 20(2), 44–60 (2011)

    Article  Google Scholar 

  26. S.H. Lee, T.K. Lim, S.T. Shin, K.S. Park, Jpn. J. Appl. Phys. 41, 208–210 (2002)

    Article  ADS  Google Scholar 

  27. F. Ahmad, M. Jamil, Y.J. Jeon, Int. J. Polym. Anal. Charact. 22(8), 659–668 (2017)

    Article  Google Scholar 

  28. D.-K. Yang, S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, Chichester, 2006)

    Book  Google Scholar 

  29. E. Lueder, Liquid Crystal Displays (Wiley, Chichester, 2001)

    Google Scholar 

  30. J.M. Mucha, Prog. Polym. Sci. 28(5), 837–873 (2003)

    Article  Google Scholar 

  31. R.R. Deshmukh, A.K. Jain, Liq. Cryst. 41(7), 960–975 (2014)

    Article  Google Scholar 

  32. C.C. Hsu, Y.X. Chen, H.W. Li, J.S. Hsu, Opt. Express 24(7), 7063–7068 (2016)

    Article  ADS  Google Scholar 

  33. K.J. Yang, S.C. Lee, B.D. Choi, Jpn. J. Appl. Phys. 49, 1–5 (2010) (05EA05)

    Google Scholar 

  34. Y. Kim, K. Kim, K.B. Kim, J.Y. Park, N. Lee, Y. Seo, Curr. Appl. Phys. 16, 409–414 (2016)

    Article  ADS  Google Scholar 

  35. A.Y.G. Fuh, C.C. Chen, C.K. Liu, K.T. Cheng, Opt. Express 17(9), 7088–7094 (2009)

    Article  ADS  Google Scholar 

  36. G. Pathak, S. Pandey, R. Katiyar, A. Srivastava, R. Dabrowski, K. Garbat, R. Manohar, J. Lumin. 192, 33–39 (2017)

    Article  Google Scholar 

  37. K. Agrahari, G. Pathak, T. Vimal, K. Kurp, A. Srivastava, R. Manohar, J. Mol. Liq. 264, 510–514 (2018)

    Article  Google Scholar 

  38. M. Mishra, R.S. Dabrowski, R. Dhar, J. Mol. Liq. 213, 247–254 (2016)

    Article  Google Scholar 

  39. M. Pande, P.K. Tripathi, A.K. Misra, S. Manohar, R. Manohar, S. Singh, Appl. Phys. A 122(217), 1–9 (2016)

    Google Scholar 

  40. P.K. Tripathi, M. Pande, S. Singh, Appl. Phys. A 122(847), 1–10 (2016)

    Google Scholar 

  41. Ö. Tüzün Özmen, K. Goksen, A. Demir, M. Durmus, O. Köysal, Synth. Met. 162, 2188–2192 (2012)

    Article  Google Scholar 

  42. M.T. Ramesan, P. Jayakrishnan, T. Anilkumar, G. Mathew, J. Mater. Sci. Mater. Electron. 29, 1992–2000 (2018)

    Article  Google Scholar 

  43. D.P. Shcherbinin, E. Konshina, Liq. Cryst. 44(4), 648–655 (2017)

    Article  Google Scholar 

  44. F. Al-Hazmi, A.A. Al-Ghamdi, N. Al-Senany, F. Alnowaiser, F. Yakuphanoglu, Compos. Part B 56, 15–19 (2014)

    Article  Google Scholar 

  45. R.K. Shukla, A. Sharma, T. Mori, T. Hegmann, W. Haase, Liq. Cryst. 43(6), 695–703 (2016)

    Article  Google Scholar 

  46. P. Durmuş, M. Yıldırım, A.: Vacuum, J. Vac. Sci. Technol. Surf. Films 32, 1–4 (2014) (061512)

    Google Scholar 

  47. A. Neagu, L. Curecheriu, M. Airimioaei, A. Cazacu, A. Cernescu, L. Mitoseriu, Compos. Part B 71, 210–217 (2015)

    Article  Google Scholar 

  48. S.P. Yadav, K. Kr. A. Pandey, R. Kr. Misra, Manohar, Acta Phys. Pol., A 119(6), 824–828 (2011)

    Article  Google Scholar 

  49. Z. Güven Özdemir, N. Yilmaz Canli, M. Kılıç, O. Köysal, Ö Yılmaz, M. Okutan, Mol. Cryst. Liq. Cryst. 634, 1–11 (2016)

    Article  Google Scholar 

  50. J. Mirzaei, M. Urbanski, H.S. Kitzerow, Philos. Trans. R. Soc. A 371, 1–18 (2013) (20120256)

    Article  Google Scholar 

Download references

Funding

This work supported financially by Düzce University Scientific Research Project (Project No: 2018.05.02.811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülsüm Kocakülah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocakülah, G., Önsal, G. & Köysal, O. Electro-optical and dielectric performance analysis: the influence of azo dye on polymer/LC composite structures. Appl. Phys. A 125, 30 (2019). https://doi.org/10.1007/s00339-018-2332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2332-8

Navigation