Skip to main content
Log in

Electron mobility in β-Ga2O3: an ensemble Monte Carlo study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Numerical simulations are performed to evaluate electron mobility in β-Ga2O3. Following scattering mechanisms were found to be important: acoustic deformation potential, ionized impurity, and polar optical phonons. In β-Ga2O3, a large primitive unit cell (containing ten atoms) leads to multiple phonon modes, which complicate the mobility calculation. Here, by restructuring an in-house ensemble Monte Carlo simulator, we were able to include and examine the effects of all relevant longitudinal optical phonon modes. For low electrical fields at 300 K, we report an electron mobility of 110 cm2/V s. Also, in the range of 150‒500 K, our simulation results match very well with the reported Hall mobility measurement data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.B. Varley, J.R. Weber, A. Janotti, C.G. Van de Walle, Oxygen vacancies and donor impurities in β-Ga2O3. Appl. Phys. Lett. 97, 142106 (2010)

    Article  ADS  Google Scholar 

  2. L.W. Sang, M.Y. Liao, M. Sumiya, A Comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors 13, 10482–10518 (2013)

    Article  Google Scholar 

  3. L.X. Qian, X.Z. Liu, T. Sheng, W.L. Zhang, Y.R. Li, P.T. Lai, β-Ga2O3 solar-blind deep-ultraviolet photodetector based on a four-terminal structure with or without Zener diodes. AIP Adv 6, 045009 (2016)

    Article  ADS  Google Scholar 

  4. S.I. Stepanov, V.I. Nikolaev, V.E. Bougrov, A.E. Romanov, Gallium oxide: properties and applications—a review. Rev. Adv. Mater. Sci. 44, 63–86 (2016)

    Google Scholar 

  5. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 100, 013504 (2012)

    Article  ADS  Google Scholar 

  6. N. Moser, J. McCandless, A. Crespo, K. Leedy, A. Green, A. Neal, S. Mou, E. Ahmadi, J. Speck, K. Chabak, N. Peixoto, G. Jessen, Ge-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 38, 6 (2017)

    Article  Google Scholar 

  7. M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V IEEE Electron Device Lett. 37(2), 212–215 (2016)

    Article  ADS  Google Scholar 

  8. A.J. Green, K.D. Chabak, E.R. Heller, R.C. Fitch, M. Baldini, A. Fiedler, K. Irmascher, G. Wagner, Z. Galazka, S.E. Tetlak, A. Crespo, K. Leedy, G.H. Jessen, 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 37(7), 902–905 (2016)

    Article  ADS  Google Scholar 

  9. K. Konishi, K. Goto, H. Murakami, Y. Kumgai, A. Kuramata, S. Yamakoshi, M. Higashiwaki, 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl. Phys. Lett. 110, 103506 (2017)

    Article  ADS  Google Scholar 

  10. K. Ghosh, U. Singisetti, Calculation of electron impact ionization co-efficient in β-Ga2O3. 72nd device research conference, Santa Barbara, CA, pp. 71–72, (2014)

  11. N. Ma, N. Tanen, A. Verma, Z. Guo, T.F. Luo, H.L. Xing, D. Jena, Intrinsic electron mobility limits in β-Ga2O3. Appl. Phys. Lett. 109, 212101 (2016)

    Article  ADS  Google Scholar 

  12. M. Schubert, R. Korlacki, S. Knight, T. Hofmann, S. Schöche, V. Darakchieva, E. Janzén, B. Monemar, D. Gogova, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, K. Goto, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93, 125209 (2016)

    Article  ADS  Google Scholar 

  13. B. Liu, M. Gu, X.L. Liu, Lattice dynamical, dielectric, and thermodynamic properties of β-Ga2O3 from first principles. Appl. Phys. Lett. 91, 172102 (2007)

    Article  ADS  Google Scholar 

  14. K. Ghosh, U. Singisetti, Ab initio calculation of electron-phonon coupling in monoclinic β-Ga2O3 crystal. Appl. Phys. Lett. 109, 072102 (2016)

    Article  ADS  Google Scholar 

  15. K. Ghosh, U. Singisetti, Ab initio velocity-field curves in monoclinic β-Ga2O3. J. Appl. Phys. 122, 035702 (2017)

    Article  ADS  Google Scholar 

  16. W.S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H.L. Xing, A. Seabaugh, W. Haensch, C. Van de Walle, Z. Galazka, M. Albrecht, R. Fornari, D. Jena, High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl. Phys. Lett. 104, 203111 (2014)

    Article  ADS  Google Scholar 

  17. Y. Kang, K. Krishnaswamy, H. Peelaers, C.G. Van de Walle, Fundamental limits on the electron mobility of β-Ga2O3. J. Phys. Condens. Matter. 29, 234001 (2017)

    Article  ADS  Google Scholar 

  18. A. Parisini, R. Fornari, Analysis of the scattering mechanisms controlling electron mobility in β-Ga2O3 crystals. Semicond. Sci. Technol. 31, 035023 (2016)

    Article  ADS  Google Scholar 

  19. C. Jacoboni, L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Modern Phys. 55, 645–705 (1983)

    Article  ADS  Google Scholar 

  20. M. Lundstrom, Fundamentals of Carrier Transport, (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  21. K. Tomizawa, Numerical Simulation of Submicron Semiconductor Device (Artech House, Boston, 1993)

    Google Scholar 

  22. S. Ahmed, C. Ringhofer, D. Vasileska, Parameter-free effective potential method for use in particle-based device simulations. IEEE Trans. Nanotechnol. 4, 465–471 (2005)

    Article  ADS  Google Scholar 

  23. S. Ahmed, C. Ringhofer, D. Vasileska, Effective potential approach for modeling MOSFET devices. J. Comput. Electron. 2, 113–117 (2003)

    Article  Google Scholar 

  24. D. Vasileska, S. Ahmed, Narrow-width SOI devices the role of quantum mechanical size quantization effect and the unintentional doping on the device operation. IEEE Trans. Electron Devices 52, 227–236 (2005)

    Article  ADS  Google Scholar 

  25. Y.-C. Chang, R.B. James, Theoretical studies of carrier transport in HgI2. Phys. Rev. B 53, 14200 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the U.S. National Science Foundation Grant no. 1610474.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaikh Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZC., Wu, Y., Lu, C. et al. Electron mobility in β-Ga2O3: an ensemble Monte Carlo study. Appl. Phys. A 124, 637 (2018). https://doi.org/10.1007/s00339-018-2053-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2053-z

Navigation