Skip to main content
Log in

Retention of carbon monoxide onto magnetic [BN fullerene: B6] and [BN fullerene: C6] nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The adsorption of the carbon monoxide molecules onto the magnetic [BN fullerene:B6] and [BN fullerene:C6] nanocomposites is analyzed by means of the density functional theory. Three nanostructures were considered to evaluate the interactions generated when molecules of CO are added until reach the saturation: magnetic pristine BN fullerene, BN fullerene functionalized with magnetic B6 and C6 clusters. For all cases, it is obtained a chemical interaction that was increasing with the number of CO molecules adsorbed. The above pristine [BNF:B6] and [BNF:C6] nanocomposites exhibit electronic behavior like-semiconductor; intrinsic magnetism (1.0 and 3.0 µB), high polarity, and low-chemical reactivity respect to pristine BNF; these quantum descriptors they are modified slightly when the [BN] fullerene, [BNF:B6] and [BNF:C6] nanocomposites are interacting with carbon monoxide molecule, moreover high chemisorption is obtained. Therefore, it is feasible to propose these nanocomposites as CO sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.R. Hoover, Ind. Eng. Chem. 13(9), 770–772 (1921)

    Article  Google Scholar 

  2. F. Cook, Ind. Eng. Chem. Anal. Ed. 12(11), 661–662 (1940)

    Article  Google Scholar 

  3. D.H. Stedman, Environ. Sci. Technol. 23(2), 147–149 (1989)

    Article  ADS  Google Scholar 

  4. S.F Liu, S. Lin, T.M. Swager, ACS Sens. 1(4), 354–357 (2016)

    Article  Google Scholar 

  5. L.B. da Silva, S.B. Fagan, R. Mota, Nano Lett. 4(1), 65–67 (2004)

    Article  ADS  Google Scholar 

  6. P.K. Dutta, A. Ginwalla, B. Hogg, B.R. Patton, B. Chwieroth, Z. Liang, P. Gouma, M. Mills, S. Akbar, J. Phys. Chem. B 103(21), 4412–4422 (1999)

    Article  Google Scholar 

  7. S.S. Sung, R. Hoffmann, J. Am. Chem. Soc. 107(3), 578–584 (1985)

    Article  Google Scholar 

  8. N. Dimakis, N.E. Navarro, T. Mion, E.S. Smotkin, J. Phys. Chem. C 118(22), 11711–11722 (2014)

    Article  Google Scholar 

  9. J. De Haeck, N. Veldeman, P. Claes, E. Janssens, M. Andersson, P. Lievens, J. Phys. Chem. A 115(11), 2103–2109 (2011)

    Article  Google Scholar 

  10. W.C. McKee, M.C. Patterson, D. Huang, J.R. Frick, R.L. Kurtz, P.T. Sprunger, L. Liu, Y. Xu, J. Phys. Chem. C 120(20), 10909–10918 (2016)

    Article  Google Scholar 

  11. S. Bates, J. Dwyer, J. Phys. Chem. 97(22), 5897–5900 (1993)

    Article  Google Scholar 

  12. K. Gotterbarm, C. Bronnbauer, U. Bauer, C. Papp, H.-P. Steinrück, J. Phys. Chem. C 118(43), 25097–25103 (2014)

    Article  Google Scholar 

  13. A.A. Peyghan, A. Soltani, A.A. Pahlevani, Y. Kanani, S. Khajeh, Appl. Surf. Sci. 270, 25–32 (2013)

    Article  ADS  Google Scholar 

  14. S. Sinthika, E.M. Kumar, R. Thapa, J. Mater. Chem. A 2, 12812–12820 (2014)

    Article  Google Scholar 

  15. E. Chigo-Anota, M. Salazar Villanueva, S. Valdez, M. Castro, Struct. Chem. 28, 1757–1764 (2017)

    Article  Google Scholar 

  16. E. Chigo Anota, G. Cárdenas-Jirón, M. Salazar Villanueva, A. Bautista Hernández, M. Castro, Phys. E 94, 196–203 (2017)

    Article  Google Scholar 

  17. E. Chigo Anota, D. Cortés Arriagada, A. Bautista Hernández, M. Castro, Appl. Surf. Sci. 400, 283–292 (2017)

    Article  ADS  Google Scholar 

  18. T. Tsuneda, Density Functional Theory in Quantum Chemistry. (Springer: Japan, Tokyo, 2014)

    Book  Google Scholar 

  19. J. Heyd, G. Scuseria, J. Chem. Phys. 121, 1187–1192 (2004)

    Article  ADS  Google Scholar 

  20. R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54, 724–728 (1971)

    Article  ADS  Google Scholar 

  21. Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, (Gaussian, Inc., Wallingford, 2013)

  22. J. Cano Ordaz, E. Chigo Anota, M. Salazar Villanueva, M. Castro, New J. Chem. 41, 8045–8052 (2017)

    Article  Google Scholar 

  23. P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103, 1793–1874 (2003)

    Article  Google Scholar 

  24. M. Galvan, A. Vela, J.L. Gázquez, J. Phys. Chem. 92, 6470–6474 (1988)

    Article  Google Scholar 

  25. H. Lu, Z. Liu, X. Yan, D. Li, L. Parent, H. Tian, Sci. Rep. 6, 24366(1)–(11) (2016)

    ADS  Google Scholar 

  26. P. Bergveld, J. Hendrikse, W. Olthuis, Meas. Sci. Technol. 9, 1801–1808 (1998)

    Article  ADS  Google Scholar 

  27. S. Sinthika, E. Mathan Kumar, V.J. Surya, Y. Kawazoe, N. Park, K. Iyakutti, R. Thapa, Sci. Rep. 5, 17460(1)–(13) (2015)

    Article  ADS  Google Scholar 

  28. Q. Sun, Q. J. Am. Chem. Soc. 135, 8246–8253 (2013)

    Article  Google Scholar 

  29. A.S Rad, V.P. Foukolaein, Synth. Met. 210, 171–178 (2015)

    Article  Google Scholar 

  30. A. Shokuhi Rad, D. Sadeghi Shabestary, S.A. Jafari, M. Reza Zardoost, A. Mirabi, Molecular Phys. 114, 1756–1762 (2016)

    Article  ADS  Google Scholar 

  31. F. Weinhold, C.R. Landis, Discovering Chemistry with Natural Bond Orbitals. (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  32. X. Li, X. Wang, J. Zhang, N. Hanagata, X. Wang, Q. Weng, A. Ito, Y. Bando, D. Golberg, Nat. Commun. 8, 13936(1)–(12) (2017)

    ADS  Google Scholar 

  33. W. Han, Z. Ma, S. Liu, C. Ge, L. Wang, X. Zhang, Ceram. Int. 43, 10192–10200 (2017)s

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by projects: VIEP-BUAP (CHAE-ING18-G) and Cuerpo Académico Ingeniería en Materiales (BUAP-CA-177). We thank the support given by the National Laboratory Supercomputing Southeast housed in the BUAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Chigo Anota.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anota, E.C., Villanueva, M.S., Hernández, A.B. et al. Retention of carbon monoxide onto magnetic [BN fullerene: B6] and [BN fullerene: C6] nanocomposites. Appl. Phys. A 124, 590 (2018). https://doi.org/10.1007/s00339-018-2015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2015-5

Navigation