Skip to main content
Log in

Improving the electrical and optical properties of CuCrO2 thin film deposited by reactive RF magnetron sputtering in controlled N2/Ar atmosphere

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the influence of N2 reactive gas on the structural, electrical and optical properties of CuCrO2 thin film deposited on the quartz substrate using RF magnetron sputtering. The introduction of nitrogen into the structure of CuCrO2 thin film clearly improves the electrical and optical properties of the material due to the addition of more charge carriers. The obtained results clearly show that transparency in the visible region and electrical resistivity of the prepared CuCrO2 thin film with N2/(Ar + N2) ratio of 40% are about 73% and 53.0 Ω cm, respectively, which are considerably improved in comparison with the pure CuCrO2 thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze, Nat. Commun. 4, 2292 (2013)

    Article  Google Scholar 

  2. A. Barnabé, Y. Thimont, M. Lalanne, L. Presmanes, P. Tailhades, J. Mater. Chem. C 3, 6012 (2015)

    Article  Google Scholar 

  3. J. Cui, H. Cao, W. Zhou, L. Chen, X. Zhai, L. Yu, T. Zheng, P. Yang, Mater. Lett. 163, 28 (2016)

    Article  Google Scholar 

  4. I.C. Kaya, S. Akin, H. Akyildiz, S. Sonmezoglu, Sol. Energy 169, 196 (2018)

    Article  ADS  Google Scholar 

  5. M. Asemi, M. Ghanaatshoar, J. Mater. Sci. 53, 7551 (2018)

    Article  ADS  Google Scholar 

  6. M. Asemi, H. Mameghani, M. Ghanaatshoar, J. Sol-Gel. Sci. Technol. 80, 201 (2016)

    Article  Google Scholar 

  7. M. Abrari, M. Ghanaatshoar, S.S.H. Davarani, H.R. Moazami, I. Kazeminezhad, Appl. Phys. A 123, 326 (2017)

    Article  ADS  Google Scholar 

  8. M. Asemi, M. Ahmadi, M. Ghanaatshoar, Ceram. Int. 44, 12862 (2018)

    Article  Google Scholar 

  9. T. Jiang, X. Li, M. Bujoli-Doeuff, E. Gautron, L. Cario, S. p. Jobic, R. Gautier, Inorg. Chem. 55, 7729 (2016)

    Article  Google Scholar 

  10. V.-A. Ha, D. Waroquiers, G.-M. Rignanese, G. Hautier, Appl. Phys. Lett. 108, 201902 (2016)

    Article  ADS  Google Scholar 

  11. A.-J. Cho, K. Park, S. Park, M.-K. Song, K.-B. Chung, J.-Y. Kwon, J. Mater. Chem. C 5, 4327 (2017)

    Article  Google Scholar 

  12. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, Nature 389, 939 (1997)

    Article  ADS  Google Scholar 

  13. J. Wang, P. Zhang, Q. Deng, K. Jiang, J. Zhang, Z. Hu, J. Chu, J. Mater. Chem. C 5, 183 (2017)

    Article  Google Scholar 

  14. T.R. Senty, B. Haycock, J. Lekse, C. Matranga, H. Wang, G. Panapitiya, A.D. Bristow, J.P. Lewis, Appl. Phys. Lett. 111, 012102 (2017)

    Article  ADS  Google Scholar 

  15. Ç. Çetin, H. Akyıldız, Mater. Chem. Phys. 170, 138 (2016)

    Article  Google Scholar 

  16. M.S. Prévot, X.A. Jeanbourquin, W.S. Bourée, F. Abdi, D. Friedrich, R. Van De Krol, N. Guijarro, F. Le Formal, K. Sivula, Chem. Mater. 29, 4952 (2017)

    Article  Google Scholar 

  17. A. Banerjee, K. Chattopadhyay, J. Appl. Phys. 97, 084308 (2005)

    Article  ADS  Google Scholar 

  18. A. Nakanishi, H. Katayama-Yoshida, T. Ishikawa, K. Shimizu, J. Phys. Soc. Jpn. 85, 094711 (2016)

    Article  ADS  Google Scholar 

  19. H.-Y. Chen, C.-C. Yang, Surf. Coat. Technol. 231, 277 (2013)

    Article  Google Scholar 

  20. T. Tripathi, I. Terasaki, M. Karppinen, J. Phys.: Condens. Matter. 28, 475801 (2016)

    ADS  Google Scholar 

  21. M. Asemi, M. Ghanaatshoar, Bull. Mater. Sci. 40, 1379 (2017)

    Article  Google Scholar 

  22. R. Nagarajan, A. Draeseke, A. Sleight, J. Tate, J. Appl. Phys. 89, 8022 (2001)

    Article  ADS  Google Scholar 

  23. Y.F. Wang, Y.J. Gu, T. Wang, W.Z. Shi, J. Sol–Gel Sci. Technol. 59, 222 (2011)

    Article  Google Scholar 

  24. T.-W. Chiu, S.-W. Tsai, Y.-P. Wang, K.-H. Hsu, Ceram. Int. 38, S673 (2012)

    Article  Google Scholar 

  25. S. Götzendörfer, C. Polenzky, S. Ulrich, P. Löbmann, Thin Solid Films 518, 1153 (2009)

    Article  ADS  Google Scholar 

  26. M. Asemi, M. Ghanaatshoar, J. Sol-Gel. Sci. Technol. 70, 416 (2014)

    Article  Google Scholar 

  27. M. Asemi, M. Ghanaatshoar, Ceram. Int. 42, 6664 (2016)

    Article  Google Scholar 

  28. M. Asemi, M. Ghanaatshoar, Appl. Phys. A 122, 853 (2016)

    Article  ADS  Google Scholar 

  29. S. Mahapatra, S.A. Shivashankar, Chem. Vap. Deposition 9, 238 (2003)

    Article  Google Scholar 

  30. F. Lin, C. Gao, X. Zhou, W. Shi, A. Liu, J. Alloy. Compd. 581, 502 (2013)

    Article  Google Scholar 

  31. D. Li, X. Fang, A. Zhao, Z. Deng, W. Dong, R. Tao, Vacuum 84, 851 (2010)

    Article  ADS  Google Scholar 

  32. R.-S. Yu, C.-P. Tasi, Ceram. Int. 40, 8211 (2014)

    Article  Google Scholar 

  33. I. Sinnarasa, Y. Thimont, L. Presmanes, A. Barnabé, P. Tailhades, Nanomaterials 7, 157 (2017)

    Article  Google Scholar 

  34. E. Arca, K. Fleischer, I. Shvets, Appl. Phys. Lett. 99, 111910 (2011)

    Article  ADS  Google Scholar 

  35. G. Dong, M. Zhang, X. Zhao, H. Yan, C. Tian, Y. Ren, Appl. Surf. Sci. 256, 4121 (2010)

    Article  ADS  Google Scholar 

  36. H.-Y. Chen, J.-T. Wu, C. Huang, Thin Solid Films 605, 180 (2016)

    Article  ADS  Google Scholar 

  37. H. Chiba, N. Hosaka, T. Kawashima, K. Washio, Thin Solid Films (2017)

  38. C.-H. Sun, D.-C. Tsai, Z.-C. Chang, E.-C. Chen, F.-S. Shieu, J. Mater. Sci.: Mater. Electron. 27, 9740 (2016)

    Google Scholar 

  39. I.C. Kaya, M.A. Sevindik, H. Akyıldız, J. Mater. Sci.: Mater. Electron. 27, 2404 (2016)

    Google Scholar 

  40. R.-S. Yu, C.-M. Wu, Appl. Surf. Sci. 282, 92 (2013)

    Article  ADS  Google Scholar 

  41. S. Firouzabadi, M. Naderi, K. Dehghani, F. Mahboubi, J. Alloy. Compd. 719, 63 (2017)

    Article  Google Scholar 

  42. M. Asemi, M. Ghanaatshoar, J. Mater. Sci.: Mater. Electron. 29, 6730 (2018)

    Google Scholar 

  43. Y. Feng, H. Lu, X. Gu, J. Qiu, M. Jia, C. Huang, J. Yao, J. Phys. Chem. Solids 102, 110 (2017)

    Article  ADS  Google Scholar 

  44. D.O. Scanlon, G.W. Watson, J. Mater. Chem. 21, 3655 (2011)

    Article  Google Scholar 

  45. Y. Wang, J. Ghanbaja, D. Horwat, L. Yu, J. Pierson, Appl. Phys. Lett. 110, 131902 (2017)

    Article  ADS  Google Scholar 

  46. P. Mandal, N. Mazumder, S. Saha, U.K. Ghorai, R. Roy, G.C. Das, K.K. Chattopadhyay, J. Phys. D: Appl. Phys. 49, 275109 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Iran National Science Foundation (INSF), under Grant number 95833328. We also thank Mr. S. Javadi Anaghizi in central laboratory of Shahid Beheshti University for his extensive help in electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghanaatshoar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Asemi, M. & Ghanaatshoar, M. Improving the electrical and optical properties of CuCrO2 thin film deposited by reactive RF magnetron sputtering in controlled N2/Ar atmosphere. Appl. Phys. A 124, 529 (2018). https://doi.org/10.1007/s00339-018-1945-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1945-2

Navigation