Skip to main content
Log in

Atomic-level study on mechanical properties and strengthening mechanisms of Al/SiC nano-composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) models for the study on the mechanical properties of β-SiC particles-reinforced aluminum matrix nano-composites (Al/SiC nano-composites) are established. The nano-composites in the model are fabricated by a powder metallurgy (P/M) process, followed by a hot isostatic pressing and then annealing to room temperature. The fabricated nano-composites have dense and even distributions of reinforced particles. Then representative volume elements (RVEs) of the fabricated nano-composites are built by adding periodic boundary conditions (PBCs). In this way, RVEs with different volume fractions and particle sizes of SiC are produced and put into the simulation of tension tests. The elasticity and strength in single axial tension obtained from MD analysis are in good agreement with those calculated according to the rule of mixture. It is found that the dispersion of SiC particles into the Al matrix leads to a significant enhancement in the strength of nano-composites compared to pure Al, which is also dramatically affected by both the volume fraction and particle size. Additionally, the Al/SiC nano-composites with finer SiC particles get greater enhancement in the mechanical behavior than those with coarser ones. MD analysis clearly shows the contributions of load-transfer effect, thermal mismatch strengthening and Orowan strengthening to the strengthening of Al/SiC nano-composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.J. Bhattacharyya, R. Mitra, Mater. Sci. Eng. A 557(1), 92–105 (2012)

    Article  Google Scholar 

  2. H. Su, W. Gao, Z. Feng, Z. Lu, Mater. Des. 36(Complete), 590–596 (2012)

    Article  Google Scholar 

  3. Y. Yang, J. Lan, X. Li, Mater. Sci. Eng. A 380(1–2), 378–383 (2004)

    Article  Google Scholar 

  4. K.M. Mussert, W.P. Vellinga, A. Bakker, J. Mater. Sci. 37(4), 789–794 (2002)

    Article  ADS  Google Scholar 

  5. M. Kök, Composites Part A 37(3), 457–464 (2006)

    Article  Google Scholar 

  6. T. Varol, A. Canakci, Powder Technol. 246(9), 462–472 (2013)

    Article  Google Scholar 

  7. B. Cheng, A.H.W. Ngan, Comput. Mater. Sci. 74(74), 1–11 (2013)

    Article  Google Scholar 

  8. T. Varol, A. Canakci, S. Ozsahin, Composites Part B 54(8), 224–233 (2013)

    Article  Google Scholar 

  9. M. Moazami-Goudarzi, F. Akhlaghi, Mater. Technol. 27(2), 158–164 (2014)

    Article  Google Scholar 

  10. Z.G. Wang, C.P. Li, H.Y. Wang, X. Zhu, M. Wu 1, Q.C. Jiang, Powder Metal. 59(4), 236–241 (2016)

    Article  Google Scholar 

  11. G. Jiang, G.S. Daehn, R.H. Wagoner, Powder Metall. 46(1), 78–82 (2013)

    Article  Google Scholar 

  12. M. Moazami-Goudarzi, F. Akhlaghi, Part. Sci. Technol. 31(3), 234–240 (2013)

    Article  Google Scholar 

  13. B.K. Choi, G.H. Yoon, S. Lee, Composites Part B. 91, 119–125 (2016)

    Article  Google Scholar 

  14. J.F. Xiang, L.J. Xie, S.A. Meguid, S.Q. Pang, J. Yi, Y. Zhang, R. Liang, Comput. Mater. Sci. 128, 359–372 (2017)

    Article  Google Scholar 

  15. V. Tomar, V. Samvedi, H.S. Kim, Int. J. Multiscale Comput. Eng. 8(8), 87–88 (2013)

  16. M. Tavakol, M. Mahnama, R. Naghdabadi, Comput. Mater. Sci. 125, 255–262 (2016)

    Article  Google Scholar 

  17. D. Zhang, L. Nastac, JOM 68(12), 1–9 (2016)

    Article  Google Scholar 

  18. H. Gu, X.L. Gao, X.C. Li, J. Comput. Theor. Nanostruct 6(1), 61–72 (2009)

    Article  Google Scholar 

  19. J.M. Winey, A. Kubota, Y.M. Gupta, Model. Simul. Mater. Sci. Eng. 17(5), 055004 (2010)

    Article  ADS  Google Scholar 

  20. Z. Yang, Z. Lu, Composites Part B. 44(1), 453–457 (2013)

    Article  MathSciNet  Google Scholar 

  21. C.R. Dandekar, Y.C. Shin, Composites Part A. 42(4), 355–363 (2011)

    Article  Google Scholar 

  22. A.P. Thompson, S.J. Plimpton, W. Mattson, J. Chem. Phys. 131(15), 154107 (2009)

    Article  ADS  Google Scholar 

  23. A.K. Subramaniyan, C.T. Sun, Int. J. Solids Struct. 45(14), 4340–4346 (2008)

    Article  Google Scholar 

  24. S. Plimpton, J. Comput. Phys. 117(1), 1–19 (1995)

    Article  ADS  Google Scholar 

  25. P. Vashishta, R.K. Kalia, A. Nakano, J. Appl. Phys. 101(10), 217–340 (2007)

    Article  Google Scholar 

  26. J.M. Winey, A. Kubota, Y.M. Gupta, Modell. Simul. Mater. Sci. Eng. 17, 055004 (2009)

    Article  ADS  Google Scholar 

  27. W.X. Wang, L.S. Niu, Y.Y. Zhang, E.Q. Lin, Comput. Mater. Sci. 62, 195–202 (2012)

    Article  Google Scholar 

  28. Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393–3407 (1999)

    Article  ADS  Google Scholar 

  29. W.R. Lambrecht, B. Segall, M. Methfessel, S.M. Van, Phys. Rev. B: Condens. Mater. 44(8), 3685–3694 (1991)

    Article  ADS  Google Scholar 

  30. Y.L. Liu, D.K. Shao, Y.T. Zeng, T. Yun, Adv. Intell. Syst. Res. 136, 139–146 (2016)

    Google Scholar 

  31. A. Stukowski, Modell. Simul. Mater. Sci. Eng. 20(4), 45021–45035 (2012). 15)

    Article  Google Scholar 

  32. Z. Yang, Z. Lu, Y.P. Zhao, Comput. Mater. Sci. 46(1), 142–150 (2009)

    Article  Google Scholar 

  33. M.R. Sorensen, M. Brandbyge, K.W. Jacobsen, Phys. Rev. B. 57(6), 3283 (1998)

    Article  ADS  Google Scholar 

  34. N. Silvestre, B. Faria, J.N.C. Canongia Lopes, Compos. Sci. Technol. 90(2), 16–24 (2014)

    Article  Google Scholar 

  35. C.S. Goh, J. Wei, L.C. Lee, M. Gupta, Acta Mater. 55(15), 5115–5121 (2007)

    Article  Google Scholar 

  36. A. Stukowski, V.V. Bulatov, A. Arsenlis, Modell. Simul. Mater. Sci. Eng. 20(8), 085007 (2012)

    Article  ADS  Google Scholar 

  37. J.E. Bailey, P.B. Hirsch, Philos. Mag. 5(53), 485–497 (2012)

    Article  ADS  Google Scholar 

  38. S. Queyreau, G. Monnet, B. Devincre, Acta Mater. 58(17), 5586–5595 (2010)

    Article  Google Scholar 

  39. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, Acta Mater. 62(5), 141–155 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Item No. 51575051). The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, S., Xie, L., Xiang, J. et al. Atomic-level study on mechanical properties and strengthening mechanisms of Al/SiC nano-composites. Appl. Phys. A 124, 209 (2018). https://doi.org/10.1007/s00339-018-1624-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1624-3

Navigation