Skip to main content
Log in

Two-dimensional carbon nanostructures obtained by laser ablation in liquid: effect of an ultrasonic field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ablation of a carbon target immersed in deionized water, in absence and in presence of ultrasonic waves is reported, and the differences investigated. The obtained nanostructures are characterized by transmission electron microscopy, Raman spectroscopy and photoluminescence. Transmission electron images reveal that the produced carbon nanostructures, with and without ultrasonic excitation, are graphene-like sheets with improved quality in the first case. Samples prepared with ultrasounds show graphene layers with large sizes (several microns) and regular shapes, whereas the samples prepared without ultrasounds show smaller sizes and irregular shapes; additionally, some dispersed quasi-spherical nanoparticles are observed in the samples prepared without ultrasound. Photoluminescence measurements of the obtained nanostructures reveal emission in the blue spectral region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J.-B. Xu, H. Zhu, Appl. Phys. Rev 4, 021306 (2017)

    Article  ADS  Google Scholar 

  2. Z. Liu, S.P. Lau, F. Yan, Chem. Soc. Rev 44, 5638 (2015)

    Article  Google Scholar 

  3. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695 (2010)

    Article  Google Scholar 

  4. L. Tang, R. Ji, X. Li, G. Bai, C.P. Liu, J. Hao, J. Lin, H. Jiang, K.S. Teng, Z. Yang, S.P. Lau, ACS Nano 8, 6312 (2014)

    Article  Google Scholar 

  5. G. Bai, S. Yuan, Y. Zhao, Z. Yang, S.Y. Choi, Y. Chai, S.F. Yu, S.P. Lau, J. Hao, Adv. Mater 28, 7472 (2016)

    Article  Google Scholar 

  6. R. Deng, Y. Zheng, G. Zhao, Cheng, ACS Nano 6, 3727 (2012)

    Article  Google Scholar 

  7. M. V.Amendola, Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013)

    Article  Google Scholar 

  8. S.I. Dolgaev, A.V. .Simakin, V.V. .Voronov, G.A. Shafeev, F. Bozon-Verduraz, Appl. Surf. Sci., 186, 546 (2002)

    Article  ADS  Google Scholar 

  9. V. Amendola, S. Scaramuzza, F. Carraro, E. Cattaruzza, J. Colloid Interface Sci. 489, 18 (2017)

    Article  ADS  Google Scholar 

  10. A. Singh, J. Vihinen, E. Frankberg, L. Hyvärinen, M. Honkanen and E. Levänen, Leo Hyvärinen, Mari Honkanen and Erkki Levänen. Nanoscale Res. Lett. 11, 447 (2016)

    Article  ADS  Google Scholar 

  11. A. Al-Hamaoy, E. Chikarakara, H. Jawad, K. Gupta, D. Kumar, M.S. R. Rao, S. Krishnamurthy, M. Morshed Appl. Surf. Sci. 302, 141 (2014)

    Article  ADS  Google Scholar 

  12. D. Amans, M. Diouf, J. Lam, G. Ledoux, C. Dujardin, J. Colloid Interface Sci 489, 114 (2017)

    Article  ADS  Google Scholar 

  13. E. Vaghri, D. Dorranian, Studia Ubb Chemia, LXI 4, 277 (2016)

    Google Scholar 

  14. M. Qiana, Y. S. Zhou, Y. Gao, T. Feng, Z. Sun, L. Jiang, Y. F. Lu. Appl. Surf. Sci 258, 9092 (2012)

    Article  ADS  Google Scholar 

  15. Z. Yang, J. Hao, J. Mater. Chem. C 4, 8859 (2016)

    Article  Google Scholar 

  16. M. Qian, Y. S. Zhou, Y. Gao, J. B. Park, T. Feng, S. M. Huang, Z. Sun, L. Jiang, Y. F. Lu. Appl. Phys. Lett. 98, 173108 (2011)

    Article  ADS  Google Scholar 

  17. V. Šteng, J. Henych, M. Slušná, P. Ecorchard. Nanoscale Res. Lett. 9, 167 (2014)

    Article  ADS  Google Scholar 

  18. K. Muthoosamy, S. Manickam, Ultrasonics-Sonochemistry 39, 478 (2017)

    Article  Google Scholar 

  19. G. Lina, D. Tanc, F. Luoa, D. Chena, Q. Zhaoa, J. Qiud, Z. Xua, J. Alloys Compd. 507, L43 (2010)

    Article  Google Scholar 

  20. N. Takada, A. Fujikawa, N. Koshizaki, K. Sasaki, Appl. Phys. A 110, 835 (2013)

    Article  ADS  Google Scholar 

  21. S. Dadras, P. Jafarkhanu, M.J. Torkamany, J. Sabbaghzadeh, J. Phys. D Appl. Phys 42, 025405 (2009)

    Article  ADS  Google Scholar 

  22. L. Escobar-Alarcón, E. Velarde Granados, D.A. Solís-Casados, O. Olea-Mejía, M. Espinosa-Pesqueira, E. Haro-Poniatowski, Appl. Phys. A 122, 433 (2016)

    Article  ADS  Google Scholar 

  23. X.D. Ren, R. Lui, L.M. Zheng, Y.P. Ren, Z.Z. Hu, H. He,; Appl. Phys. Lett. 108, (Art. N. 071904) (2016)

    Article  ADS  Google Scholar 

  24. C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  25. A. C. Ferrari, D. M. Basko, Nat. Nanotechnol. 8, 235 (2013)

    Article  ADS  Google Scholar 

  26. C. Ferrari, Solid State Commun. 143, 47–57 (2007)

    Article  ADS  Google Scholar 

  27. F.T. Johra, J.-W. Lee, W.-G. Jung, J. Ind. Eng. Chem. 20, 2883 (2014)

    Article  Google Scholar 

  28. S. Kim, S. W. Hwang, M.-K. Kim, D. Y. Shin, D. H. Shin, C. O. Kim, S. B. Yang, J. H. Park, E. Hwang, S.-H. Choi, G. Ko, S. Sim, C. Sone, H. J. Choi, S. Bae, B. H. Hong. ACS Nano 6(9), 8203–8208 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the CONACYT project CB-240998 and the Spanish project MINECO/FEDER TEC2015-69916-C2-1-R. Additionally, ININ through the project CB-602 is acknowledged. M. Martinez-Orts acknowledges the financial support of the Autonomous Community of Madrid and the European Social Fund (contract E-28-2017-0679526). The technical support with TEM measurements provided by P. Castillo of the electron microscopy laboratory of UAMI is also recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Escobar-Alarcón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar-Alarcón, L., Espinosa-Pesqueira, M.E., Solis-Casados, D.A. et al. Two-dimensional carbon nanostructures obtained by laser ablation in liquid: effect of an ultrasonic field. Appl. Phys. A 124, 141 (2018). https://doi.org/10.1007/s00339-018-1559-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1559-8

Navigation