Skip to main content
Log in

Analysis of electronic parameters and frequency-dependent properties of Au/NiO/n-GaN heterojunctions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electrical and frequency-dependent properties of ten Au/NiO/n-GaN heterojunctions fabricated with similar conditions are assessed by I–V, C–V, and G–V measurement methods. In addition, C–f and G–f measurements are conducted in the frequency range of 1 kHz–1 MHz. The electronic parameters are changed from junction to junction even if they are fabricated in the similar way. The calculated barrier height and ideality factor values are fitted by the Gaussian distribution function. Statistical analysis of the data provides the mean barrier height and ideality factor values of 0.84 eV and 2.70 for the heterojunction. Besides, the mean barrier height (Ф b), donor concentration (N d), space charge layer width (W D), and Fermi level (E F) are determined from the C–V data and the corresponding values are 1.30 eV, 2.00 × 1017 cm−3, 8.222 × 10−6 cm, and 0.018 eV, respectively. The interface state density (N SS) and relaxation time (τ) are assessed from C–f and G–f measurements. Moreover, the dielectric constant (ε′), dielectric loss (ε″), tangent loss (tan δ), and electrical conductivity (σ ac) are determined from C–f and G–f data in the frequency range of 1 kHz–1 MHz with various biases (0.1–0.6 V). ε′ and ε″ are decreased with increasing frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. D. Mistele, T. Rotter, K.S. Röver, S. Paprotta, M. Seyboth, V. Schwegler, F. Edler, H. Klausing, O.K. Semchinova, J. Stemmer, J. Aderhold, J. Graul, First AlGaN/GaN MOSFET with photoanodic gate dielectric. Mater. Sci. Eng. B 93, 107–111 (2002)

    Article  Google Scholar 

  2. I. Akasaki, Key inventions in the history of nitride-based blue LED and LD. J. Cryst. Growth 300, 2–10 (2007)

    Article  ADS  Google Scholar 

  3. E. Monroy, F. Calle, J.L. Pau, E. Munoz, F. Omnes, B. Beaumont, P. Gibart, Application and performance of GaN based UV detectors. Phys. Status Solidi A 185, 91–97 (2001)

    Article  ADS  Google Scholar 

  4. J.A. del Alamo, J. Joh, GaN HEMT reliability. Microelectron. Reliab 49, 1200–1206 (2009)

    Article  Google Scholar 

  5. E.J. Miller, E.T. Yu, P. Waltereit, J.S. Speck, Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy. Appl. Phys. Lett. 84, 535–537 (2004)

    Article  ADS  Google Scholar 

  6. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts. (Clarendon, Oxford Press, 1978)

    Google Scholar 

  7. S.M. Sze, Physics of Semiconductor Devices. (Wiley, New York, 1981)

    Google Scholar 

  8. S. Karadeniz, N. Tugluoglu, T. Serin, Substrate temperature dependence of series resistance in Al/SnO2/p-Si (111) Schottky diodes prepared by spray deposition method. Appl. Surf. Sci 233, 5–13 (2004)

    Article  ADS  Google Scholar 

  9. S. Karadeniz, N. Tugluoglu. T. Serin, N. Serin, The energy distribution of the interface state density of SnO2/p-Si (111) heterojunctions prepared at different substrate temperatures by spray deposition method. Appl. Surf. Sci 246, 30–35 (2005)

    Article  ADS  Google Scholar 

  10. A.D. Bartolomeo, G. Luongo, F. Giubileo, N. Funicello, G. Niu, T. Schroeder, M. Lisker, G. Lupina, Hybrid graphene/silicon Schottky photodiode with intrinsic gatingeffect. 2D Mater. 4(1–11), 025075 (2017)

    Article  Google Scholar 

  11. C.S. Oh, J. Youn, G.M. Yang, K.Y. Lim, J.W. Yang, AlGaN∕GaNAlGaN∕GaN metal-oxide-semiconductor heterostructure field-effect transistor with oxidized Ni as a gate insulator. Appl. Phys. Lett. 85, 4214–4216 (2004)

    Article  ADS  Google Scholar 

  12. P. Fiorenza, G. Greco, F. Giannazzo, R.L. Nigro, F. Roccaforte, Poole-Frenkel emission in epitaxial nickel oxide on AlGaN/GaN heterostructures. Appl. Phys. Lett. 101, 172901 (1–4) (2012)

  13. W. Hui, Z. Bao-Lin, W. Guo-Guang, W. Chao, S. Zhi-Feng, Z. Yang, W. Jin, M. Yan, D. Guo-Tong, D. Xin, Properties of p-NiO/n-GaN diodes fabricated by magnetron sputtering. Chin. Phys. Lett. 29, 107304 (1–3) (2012)

  14. R.L. Nigro, G. Fisichella, S. Battiato, G. Greco, P. Fiorenza, F. Roccaforte, G. Malandrino, An insight into the epitaxial nanostructures of NiO and CeO2 thin film dielectrics for AlGaN/GaN heterostructures. Mater. Chem. Phys 162, 461–468 (2015)

    Article  Google Scholar 

  15. L. Li, X. Wang, Y. Liu, J.-P. Ao, NiO/GaN heterojunction diode deposited through magnetron reactive sputtering. J. Vac. Sci. Technol. A 34, 02D104 (1–6) (2016)

  16. V. Rajagopal Reddy, P.R. Sekhar Reddy, I. Neelakanta Reddy, C.-J. Choi, Microstructural, electrical and carrier transport properties of Au/NiO/n-GaN heterojunction with a nickel oxide interlayer. RSC Adv 6, 105761–105770 (2016)

    Article  Google Scholar 

  17. H.G. Cetinkaya, M. Yildirim, P. Durmus, S. Altındal, Correlation between barrier height and id eality factor in identically prepared diodes of Al/Bi4Ti3O12/p-Si (MFS) structure with barrier inhomogeneity. J. Alloys Compd. 721, 750–756 (2017)

    Article  Google Scholar 

  18. H.G. Cetinkaya, M. Yildirim, P. Durmus, S. Altındal Diode-to-diode variation in dielectric parameters of identically prepared metal-ferroelectric-semiconductor structures. J. Alloys Compd. 728, 896–901 (2017)

    Article  Google Scholar 

  19. S. Altındal Yeriskin, M. Balbasi, I. Orak, The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. 28, (2017) 14040–14048

  20. H. Sato, T. Minami, S. Takata, T. Yamada, Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236, 27–31 (1993)

    Article  ADS  Google Scholar 

  21. J. Bandara, H. Weerasinghe, Solid-state dye-sensitized solar cell with p-type NiO as a hole collector. Sol. Energy Mater. Sol. Cells 85, 385–390 (2005)

    Article  Google Scholar 

  22. T. Li, S. Ni, X. Lv, X. Yang, S. Duan, Preparation of NiO–Ni/natural graphite composite anode for lithium ion batteries. J. Alloys Compd. 553, 167–171 (2013)

    Article  Google Scholar 

  23. F. Zhang, Y. Zhou, H. Li, Nanocrystalline NiO as an electrode material for electrochemical capacitor. Mater. Chem. Phys 83, 260–264 (2004)

    Article  Google Scholar 

  24. Y. Du, W.N. Wang, X.W. Li, J. Zhao, J.M. Ma, Y.P. Liu, Preparation of NiO nanoparticles in microemulsion and its gas sensing performance. Mater. Lett 68, 168–170 (2012)

    Article  Google Scholar 

  25. V. Rajagopal Reddy, V. Janardhanam, J. Won, C.-J. Choi, Microstructural, electrical and frequency-dependent properties of Au/p-Cu2ZnSnS4/n-GaN heterojunction. J. Colloid Interface Sci 499, 180–188 (2017)

    Article  ADS  Google Scholar 

  26. V. Rajagopal Reddy, Electrical properties and transport mechanisms of Au/Ba0.6Sr0.4TiO3/GaN metal–insulator–semiconductor (MIS) diode at high temperature range. Appl. Phys. A 122(1–7), 519 (2016)

    Article  ADS  Google Scholar 

  27. R. Padma, K. Sreenu, V. Rajagopal Reddy, Electrical and frequency dependence characteristics of Ti/polyethylene oxide (PEO)/p-type InP organic-inorganic Schottky junction. J. Alloys Compd. 695, 2587–2596 (2017)

    Article  Google Scholar 

  28. B.Baris, Analysis of device parameters for Au/Tin oxide/n-Si(100) metal–oxide–semiconductor (MOS) diodes. Phys. B 438, 65–69 (2014)

  29. T.U. Kampen, W. Monch, Lead contacts on Si(111): H − 1 × 1 surfaces. Surf. Sci 331–333, 490–495 (1995)

    Article  Google Scholar 

  30. R.F. Schmitsdorf, T.U. Kampen, W. Monch, Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers. J. Vac. Sci. Technol. B 15, 1221–1226 (1997)

    Article  Google Scholar 

  31. H. Cetin, B. Sahin, E. Ayyildiz, A. Turut, Ti/p-Si Schottky barrier diodes with interfacial layer prepared by thermal oxidation. Phys. B 364, 133–141 (2005)

    Article  ADS  Google Scholar 

  32. A.D. Bartolomeo, F. Giubileo, G. Luongo, L. Iemmo, N. Martucciello, G. Niu, M. Fraschke, O. Skibitzki, T. Schroeder, G. Lupina, Tunable Schottky barrier and high responsivity in graphene/Si nanotip optoelectronic device. 2D Mater. 4, 015024(1–11) (2017)

  33. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications. (Plenum Press, New York, 1984)

    Book  Google Scholar 

  34. S. Altindal, H. Kanbur, A. Tataroglu, M.M. Bulbul, The barrier height distribution in identically prepared Al/p-Si Schottky diode with the native interfacial insulator layer (SiO2). Phys. B 399, 146–154 (2007)

    Article  ADS  Google Scholar 

  35. Y.P. Song, R.L. Van Meirhaeghe, W.H. Lafle´re, F. Cardon, On the difference in apparent barrier height as obtained from capacitance-voltage and current-voltage-temperature measurements on Al/p-InP Schottky barriers. Solid-State Electron 29, 633–638 (1986)

    Article  ADS  Google Scholar 

  36. O. Gullu, O. Baris, M. Biber, A. Turut, Laterally inhomogeneous barrier analysis of the methyl violet/p-Si organic/inorganic hybrid Schottky structures. Appl. Surf. Sci 254, 3039–3044 (2008)

    Article  ADS  Google Scholar 

  37. P. Klopfenstein, G. Bastide, M. Rouzeyre, M. Gendry, J. Durand, Interface studies and electrical properties of plasma sulfide layers on n-type InP. J. Appl. Phys 63, 150–158 (1988)

    Article  ADS  Google Scholar 

  38. O. Gullu, S. Asubay, S. Aydogan, A. Turut, Electrical characterization of the Al/new fuchsin/n-Si organic-modified device. Physica E 42, 1411–1416 (2010)

    Article  ADS  Google Scholar 

  39. K. Akkilic, I. Uzun, T. Kilicoglu, The calculation of electronic properties of an Ag/chitosan/n-Si Schottky barrier diode. Synth. Met 157, 297–302 (2007)

    Article  Google Scholar 

  40. J.H. Werner, Schottky barrier and pn-junction I/V plots-small signal evaluation. Appl. Phys. A 47, 291–300 (1988)

    Article  ADS  Google Scholar 

  41. J.H. Werner, H.H. Guttler, Barrier inhomogeneities at Schottky contacts. J. Appl. Phys 69, 1522–1533 (1991)

    Article  ADS  Google Scholar 

  42. P. Chattopadhyay, B. Ray Chaudhuri, Frequency dependence of forward capacitance-voltage characteristics of Schottky barrier diodes. Solid-State Electron 36, 605–610 (1993)

    Article  ADS  Google Scholar 

  43. E.H. Nicollian, A. Goetzberger, The Si-SiO2 interface-electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst. Tech. J. 46, 1055–1132 (1967)

    Article  Google Scholar 

  44. E.H. Nicollian, J.R. Brews, MOS Physics and Technology. (Wiley, New York, 1982)

    Google Scholar 

  45. J. Fernandez, P. Godignon, S. Berberich, J. Rebollo, G. Brezenanu, J. Millan, High frequency characteristics and modelling of p-type 6H-silicon carbide MOS structures. Solid-State Electron 39, 1359–1364 (1996)

    Article  ADS  Google Scholar 

  46. H.X. Yuan, G. Grubisic, T.T.S. Wong, Electrical characterization of anodically grown native oxide on GaInSb. Solid-State Electron 42, 979–985 (1998)

    Article  ADS  Google Scholar 

  47. F. Parlakturk, S. Altindal, A. Tataroglu, M. Parlak, A. Agasiev, On the profile of frequency dependent series resistance and surface states in Au/Bi4Ti3O12/SiO2/n-Si(MFIS) structures. Microelectron. Eng 85, 81–88 (2008)

    Article  Google Scholar 

  48. R. Padma, B. Prasanna Lakshmi, V. Rajagopal, Reddy, Capacitance-frequency (C-f) and conductance–frequency (G-f) characteristics of Ir/n-InGaN Schottky diode as a function of temperature. Superlattices Microstrct 60, 358–369 (2013)

    Article  ADS  Google Scholar 

  49. V.V. Daniel, Dielectric Relaxation. (Academic, London, 1967)

    Google Scholar 

  50. S. Karadeniz, 60Co γ-ray radiation effects on dielectric characteristics of tin oxide films of different thicknesses on n-type Si (111) substrates. Nucl. Instr. and Meth. Phys. Res. B 260, 571–578 (2007)

    Article  ADS  Google Scholar 

  51. A. Kaya, O. Vural, H. Tecimer, S. Demirezen, S. Altindal, Frequency and voltage dependence of dielectric properties and electric modulus in Au/PVC + TCNQ/p-Si structure at room temperature. Curr. Appl. Phys 14, 322–330 (2014)

    Article  ADS  Google Scholar 

  52. M. Popescu, I. Bunget, Physics of Solid Dielectrics. (Elsevier, Amsterdam, 1984)

    Google Scholar 

  53. J. Ho, T.R. Jow, S. Boggs, Historical introduction to capacitor technology. IEEE Elect. Insul. Mag 26, 20–25 (2010)

    Article  Google Scholar 

  54. A. Buyukbas, A. Tataroglu, M. Balbasi, Dielectric, conductivity and modulus analysis of AuGe/SiO2/p-Si/AuGe capacitor. J. Optoelectron. Adv. Mater 17, 1134–1138 (2015)

    Google Scholar 

  55. J.H. Lin, J.J. Zeng, Y.J. Lin, Electronic transport for graphene/n-Si Schottky diodes with and without H2O2 treatment. Thin Solid Films 550, 582–586 (2014)

    Article  ADS  Google Scholar 

  56. A. Chelkowski, Dielectric Physics. (Elsevier, Amsterdam, 1980)

    Google Scholar 

  57. S. Altindal, B. Sari, H.I. Unal, N. Yavas, Electrical characteristics of Al/Polyindole Schottky barrier diodes. I. Temperature dependence. J. Appl. Polym. Sci 113, 2955–2961 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Gunasekhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, V.N., Padma, R. & Gunasekhar, K.R. Analysis of electronic parameters and frequency-dependent properties of Au/NiO/n-GaN heterojunctions. Appl. Phys. A 124, 79 (2018). https://doi.org/10.1007/s00339-017-1483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1483-3

Navigation