Skip to main content
Log in

Determination of the electronic properties of Cu2ZnSnSe4-based solar cells by impedance spectroscopy and current–voltage characteristics analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cu2ZnSnSe4 (CZTSe) thin films were synthesized by a cosputtering–annealing process and characterized as absorber layer of solar cells. Electrical characteristics of the solar cells were analyzed by coupling current–voltage measurements with impedance spectroscopy. The slightly p-type nature of the CZTSe absorber is evidenced with a doping level as low as 1.4 × 1015 cm−3. The solar cells exhibit a dominant recombination pathway in the space charge region in which it was revealed an apparent increase of the doping due to the ionization of deep level in the bandgap. Moreover, open circuit voltage of solar cells is found to be mainly limited by the low built-in voltage at the CdS/CZTSe interface. We conclude that the device architecture can play a major role in the electrical properties of solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Delbos, Kësterite thin films for photovoltaics: a review. EPJ Photovolt 3, 35004 (2012)

    Article  ADS  Google Scholar 

  2. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4 (2013)

  3. C. Platzer-Björkman, Kesterite compound semiconductors for thin film solar cells. Curr. Opin. Green Sustain. Chem. 4, 84 (2017)

    Article  Google Scholar 

  4. Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, S. Guha, Cu2ZnSnSe4 thin-film solar cells by thermal coevaporation with 11.6% efficiency and improved minority carrier diffusion length. Adv. Energy Mater. 5, 1401372 (2015)

    Article  Google Scholar 

  5. G. Altamura, J. Vidal, Impact of minor phases on the performances of CZTSSe thin-film solar cells. Chem. Mater. 28, 3540 (2016)

    Article  Google Scholar 

  6. T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells. Adv. Energy Mater. 3, 34 (2013)

    Article  Google Scholar 

  7. R. Bodeux, M. Gervais, J. Wolfman, C. Autret-Lambert, G. Liu, F. Gervais, CaCu3Ti4O12 thin film capacitors: evidence of the presence of a Schottky type barrier at the bottom electrode. Thin Solid Films 520, 2632 (2012)

    Article  ADS  Google Scholar 

  8. R. Bodeux, D. Michau, M. Josse, M. Maglione, Dielectric properties of tetragonal tungsten bronze films deposited by RF magnetron sputtering. Sol. State Sci. 38, 112 (2014)

    Article  ADS  Google Scholar 

  9. M. Igalson, M. Bodegard, L. Stolt, Reversible changes of the fill factor in the ZnO/CdS/Cu(In,Ga)Se2 solar cells. Sol. Energy Mater. Sol. Cells 80, 195 (2003)

    Article  Google Scholar 

  10. J. Serhan, Z. Djebbour, W. Favre, A. Migan-Dubois, A. Darga, D. Mencaraglia, N. Naghavi, G. Renou, J.-F. Guillemoles, D. Lincot, Investigation of the metastability behavior of CIGS based solar cells with ZnMgO–Zn (S,O,OH) window-buffer layers. Thin Solid Films 519, 7606 (2011)

    Article  ADS  Google Scholar 

  11. E. Kask, M. Grossberg, R. Josepson, P. Salu, K. Timmo, J.Krustok, Defect studies in Cu2ZnSnSe4 and Cu2ZnSn(Se0.75S0.25)4 by admittance and photoluminescence spectroscopy. Mat. Sci. Semicond. Proc. 16, 992 (2013)

    Article  Google Scholar 

  12. E. Kask, J. Krustok, S. Giraldo, M. Neuschitzer, S. López-Marino, and E Saucedo Temperature dependent electrical characterization of thin film Cu2ZnSnSe4 solar cells. J. Phys. D Appl. Phys. 49, 085101 (2016)

    Article  ADS  Google Scholar 

  13. W. Wu, Y. Cao, J.V. Caspar, Q. Guo, L.K. Johnson, R.S. Mclean, I. Malajovich, R. Kaushik, Choudhury, Characterization of CZTSSe photovoltaic device with an atomic layer-deposited passivation layer. Appl. Phys. Lett. 105, 042108 (2014)

    Article  ADS  Google Scholar 

  14. T.P. Weiss, A. Redinger, J. Luckas, M. Mousel, S. Siebentritt, Admittance spectroscopy in kesterite solar cells: defect signal or circuit response. Appl. Phys. Lett. 102, 202105 (2013)

    Article  ADS  Google Scholar 

  15. P.A. Fernandes, P.M.P. Salomé, A.F. Sartori, J. Malaquias, A.F. da Cunha, B.-A. Schubert, J.C. González, G.M. Ribeiro, Effects of sulphurization time on Cu2ZnSnS4 absorbers and thin films solar cells obtained from metallic precursors. Sol. Energy Mater. Sol. Cells 115, 157 (2013)

    Article  Google Scholar 

  16. S. Huang, W. Luo, Z. Zou, Band positions and photoelectrochemical properties of Cu2ZnSnS4 thin films by the ultrasonic spray pyrolysis method. J. Phys. D Appl. Phys. 46, 235108 (2013)

    Article  ADS  Google Scholar 

  17. T.P. Dhakal, C.-Y. Peng, R. Reid Tobias, R. Dasharathy, C.R. Westgate, Characterization of a CZTS thin film solar cell grown by sputtering method. Sol. Energy 100, 23 (2014)

    Article  ADS  Google Scholar 

  18. J.V. Li, D. Kuciauskas, M.R. Young, I.L. Repins, Effects of sodium incorporation in Co-evaporated Cu2ZnSnSe4 thin-film solar cells. App. Phys. Lett. 102, 163905 (2013)

    Article  ADS  Google Scholar 

  19. S. Chen, J.-H. Yang, X.G. Gong, A. Walsh, S.-H. Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 81, 245204 (2010)

    Article  ADS  Google Scholar 

  20. R. Haight, A.A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, D.B. Mitzi, Band alignment at the Cu2ZnSn(S x Se1–x )4/CdS interface. Appl. Phys. Lett. 98, 253502 (2011)

    Article  ADS  Google Scholar 

  21. C.J. Hages, N.J. Carter, R. Agrawal, T. Unold, Generalized current-voltage analysis and efficiency limitations in non-ideal solar cells: case of Cu2ZnSn(S x Se1–x )4 and Cu2Zn(SnyGe1–y)(SxSe1x)4. J. Appl. Phys. 115, 234504 (2014)

    Article  ADS  Google Scholar 

  22. T. Gershon, Y.S. Lee, P. Antunez, R. Mankad, S. Singh, D. Bishop, O. Gunawan, M. Hopstaken, R. Haight, Adv. Energy Mater. 6, 1502468 (2016)

    Article  Google Scholar 

  23. Y.S. Lee, T. Gershon, T.K. Todorov, W. Wang, M.T. Winkler, M. Hopstaken, O. Gunawan, J. Kim, Atomic layer deposited aluminum oxide for interface passivation of Cu2ZnSn(S,Se)4 thin-film solar cells. Adv. Energy Mater. 6, 1600198 (2016)

    Article  Google Scholar 

  24. R. Bodeux, F. Mollica, S. Delbos, Growth of Cu2ZnSnSe4 by cosputtering and reactive annealing atmosphere. Sol. Energy Mater. Sol. Cells 132, 67 (2015)

    Article  Google Scholar 

  25. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices. (Wiley, New York, 1981)

    Google Scholar 

  26. J.V. Li, S. Grover, M.A. Contreras, K. Ramanathan, D. Kuciauskas, R. Noufi, A recombination analysis of Cu(In,Ga)Se2 solar cells with low and high Ga compositions. Sol. Energy Mater. Sol. Cells 124, 143 (2014)

    Article  Google Scholar 

  27. A. Redinger, M. Mousel, M.H. Wolter, N. Valle, S. Siebentritt, Influence of S/Se ratio on series resistance and on dominant recombination pathway in Cu2ZnSn(SSe)4 thin film solar cells. Thin Solid Films 535, 291 (2013)

    Article  ADS  Google Scholar 

  28. U. Rau, H.W. Schock, Appl. Phys. A 69, 131 (1999)

    Article  ADS  Google Scholar 

  29. U. Rau, A. Jasenek, H.W. Schock, F. Engelhardt, T. Meyer, Electronic loss mechanisms in chalcopyrite based heterojunction solar cells. Thin Solid Films 361, 298 (2000)

    Article  ADS  Google Scholar 

  30. R. Sheer, H.-W. Schock, Chalcogenide Photovoltaics. (Wiley-VCH Verlag & Co. KGaA, Weinheim, 2011)

    Book  Google Scholar 

  31. J.T. Wätjen, J. Engman, M. Edoff, C. Platzer-Björkman, Direct evidence of current blocking by ZnSe in Cu2ZnSnSe4 solar cells. Appl. Phys. Lett. 100, 173510 (2012)

    Article  ADS  Google Scholar 

  32. J.J. Scragg, T. Kubart, J.T. Wätjen, T. Ericson, M.K. Linnarsson, C. Platzer-Björkman, Effects of back contact instability on Cu2ZnSnS4 devices and processes. Chem. Mater. 25, 3162 (2013)

    Article  Google Scholar 

  33. K. Wang, O. Gunawan, T. Todorov, B. Shin, S.J. Chey, N.A. Bojarczuk, D. Mitzi, S. Guha, Thermally evaporated Cu2ZnSnS4 solar cells. Appl. Phys. Lett. 97, 143508 (2010)

    Article  ADS  Google Scholar 

  34. D.A.R. Barkhouse, R. Haight, N. Sakai, H. Hiroi, H. Sugimoto, B. David, Mitzi, Cd-free buffer layer materials on Cu2ZnSn(S x Se1–x )4: band alignments with ZnO, ZnS, and In2S3. Appl. Phys. Lett. 100, 193904 (2012)

    Article  ADS  Google Scholar 

  35. G. Sasikala, P. Thilakan, C. Subramanian, Modification in the chemical bath deposition apparatus, growth and characterization of CdS semiconducting thin films for photovoltaic applications. Sol. Energy Mater. Sol. Cells 62, 275 (2000)

    Article  Google Scholar 

  36. G. Brammertz, M. Buffière, Y. Mevel, Y. Ren, A.E. Zaghi, N. Lenaers, Y. Mols, C. Koeble, J. Vleugels, M. Meuris, J. Poortmans, Correlation between physical, electrical, and optical properties of Cu2ZnSnSe4 based solar cells. Appl. Phys. Lett. 102, 013902 (2013)

    Article  ADS  Google Scholar 

  37. C. Persson, Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 107, 053710 (2010)

    Article  ADS  Google Scholar 

  38. M. Cwil, M. Igalson, P. Zabierowski, S. Siebentritt, Charge and doping distributions by capacitance profiling in Cu(In,Ga)Se2 solar cells. J. Appl. Phys. 103, 063701 (2008)

    Article  ADS  Google Scholar 

  39. M. Vora, Effect of indium intercalation on various properties of MoSe2 single crystals. Cryst. Res. Technol. 42, 286 (2007)

    Article  Google Scholar 

  40. M. Hack, M. Shur, Theoretical modeling of amorphous silicon-based alloy p-i-n solar cells. J. Appl. Phys. 54, 5858 (1983)

    Article  ADS  Google Scholar 

  41. U. Dutta, P. Chatterjee, The open circuit voltage in amorphous silicon p-i-n solar cells and its relationship to material, device and dark diode parameters. J. Appl. Phys. 96, 2261 (2004)

    Article  ADS  Google Scholar 

  42. M. Neuschitzer, Y. Sanchez, T. Olar, T. Thersleff, S. Lopez-Marino, F. Oliva, M. Espindola-Rodriguez, H. Xie, M. Placidi, V. Izquierdo-Roca, I. Lauermann, K. Leifer, A. Pérez-Rodriguez, E. Saucedo, Complex surface chemistry of kesterites: Cu/Zn reordering after low temperature postdeposition annealing and its role in high performance devices. Chem. Mater. 27, 5279 (2015)

    Article  Google Scholar 

  43. M.G. Sousa, A.F. da Cunha, J.P. Teixeira, J.P. Leitão, G. Otero-Iruruet, M.K. Singh, Optimization of post-deposition annealing in Cu2ZnSnS4 thin film solar cells and its impact on device performance. Sol. Energy Mater. Sol. Cells 170, 287–294 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the French Agence Nationale de la Recherche (ANR) under Grant NovACEZ (ANR-10-HABISOL-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Bodeux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodeux, R., Rousset, J., Tsin, F. et al. Determination of the electronic properties of Cu2ZnSnSe4-based solar cells by impedance spectroscopy and current–voltage characteristics analysis. Appl. Phys. A 124, 22 (2018). https://doi.org/10.1007/s00339-017-1437-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1437-9

Navigation