Skip to main content
Log in

Highly ordered porous alumina membranes for Ni–Fe nanowires fabrication

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Free-standing through-pores alumina membranes of 30–90 µm thickness and 70 × 70 mm size have been fabricated to deposit Ni–Fe nanowires by electrochemical processing. Ni–15%Fe nanowires were deposited locally into the membranes. Due to highly ordered microstructure of the membranes, the pores were filled by nanowires almost to 100%. The membrane nanowires composite morphology; structure and chemical features have been studied by scanning electron microscopy, X-ray structural analysis and X-ray energy-dispersive spectroscopy. The anomalous Fe deposition effect was observed at the initial stage of Ni–Fe composite deposition into narrow channels of porous alumina. Furthermore, deposition process is being stabilized, and constant chemical composition nanowires are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Initial size of a substrate with protective region for 10 × 48 mm contact is 70 × 48 mm.

References

  1. M.V. Puydinger dos Santos, M. Velo, R.D. Domingos, J. Bettini, J.A. Diniz, F. Béron, K.R. Pirota, Electrodeposited nickel nanowires for magnetic-field effect transistor (MagFET). J. Integr. Circ. Syst. 11, 13–18 (2016)

    Google Scholar 

  2. X. Kou, X. Fan, R.K. Dumas, Q. Lu, Y. Zhang, H. Zhu, X. Zhang, K. Liu, J.Q. Xiao, Memory effects in magnetic nanowire arrays. Adv. Mater 23, 1393–1397 (2011)

    Article  Google Scholar 

  3. Y. Li, F. Qian, J. Xiang, C.M. Liebe, Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (2006)

    Article  Google Scholar 

  4. S. Krimpalis, O.G. Dragos, M. Grigoras, N. Lupu, H. Chiriac, Magnetoresistance and spin transfer torque in electrodeposited NiFe/Cu multilayered nanowires. J. Adv. Res. in Phys 1(2), 021005 (2010)

    Google Scholar 

  5. J. Han, X. Qin, Z. Quan, L. Wang, X. Xu, Perpendicular giant magnetoresistance and magnetic properties of Co/Cu nanowire arrays affected by period number and copper layer thickness. Adv. Cond. Matt. Phys. (2016). https://doi.org/10.1155/2016/9019806

    Google Scholar 

  6. M.N. Ou, T.J. Yang, S.R. Harutyunyan, Y.Y. Chen, C.D. Chen, S.J. La, Electrical and thermal transport in single nickel nanowire. Appl. Phys. Lett. 92, 063101 (2008)

    Article  ADS  Google Scholar 

  7. N. Verma, K.C. Singh, J. Jindal, Fabrication of nanomaterials on porous anodic alumina template using various techniques. Indian J. Adv. Chem. Sci 3(3), 235–246 (2015)

    Google Scholar 

  8. M.D.L. Balela, S. Yagi, E. Matsubar, Fabrication of cobalt nanowires by electroless deposition under external magnetic field. J. Electrochem. Soc 158(4), D210–D216 (2011)

    Article  Google Scholar 

  9. S. Zhang, D. Zhao, Advances in magnetic materials: processing, properties, and performance. CRS, Taylor&Francis Group, Boca Raton, London, New York (2017)

    Google Scholar 

  10. Y.Y. Kong, S.C. Pang, S.F. Chin, Facile synthesis of nickel nanowires with controllable morphology. Mater. Lett 142, 1–3 (2015)

    Article  Google Scholar 

  11. K.T. Tsai, Y.R. Huang, M.Y. Lai, C.Y. Liu, H.H. Wang, J.H. He, Y.L. Wang, Identical length nanowire arrays in anodic alumina templates. J. Nanosci. Nanotechnol 10(12), 8293–8297 (2010)

    Article  Google Scholar 

  12. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)

    Article  ADS  Google Scholar 

  13. A. Santos, L. Vojkuvka, J. Pallare’s, J. Ferre’-Borrull, L.F. Marsal, Cobalt and nickel nanopillars on aluminium substrates by direct current electrodeposition process nanoscale. Res. Lett 4, 1021–1028 (2009)

    Google Scholar 

  14. M. Ramasubramanian, S.N. Popova, B.N. Popov, R.E. White, K.M. Yin, Anomalous codeposition of Fe–Ni alloys and FeNi–SiO2 composites under potentiostatic conditions. J. Electrochem. Soc. 143, 2164–2172 (1996)

    Article  Google Scholar 

  15. D. Routkevitch, J. Chan, J.M. Xu, M. Moskovits, Magnetic properties of Fe deposited into anodic aluminum oxide pores. Electrochem. Soc. Proc. Ser. PV 97-7, 350 (1997)

    Google Scholar 

  16. D. Brüggemann, Nanoporous aluminium oxide membranes as cell interfaces. J. Nanomater 460870, 1–18 (2013). https://doi.org/10.1155/2013/460870

  17. J. Xu, L. Chen, A. Mathewson, K.M. Razeeb, Ultra-long metal nanowire arrays on solid substrate with strong bonding. Nanoscale Res. Lett 6, 525, 1–7 (2011)

    Google Scholar 

  18. H.U. Osmanbeyoglu, T.B. Hur, H.K. Kim, Thin alumina nanoporous membranes for similar size biomolecule separation. J. Membrane Sci 343, 1–6 (2009)

    Article  Google Scholar 

  19. R.C. Furneaux, W.R. Rigby, A.P. Davidson, The formation of controlled-porosity membranes from anodically oxidized aluminum. Nature 337, 147–149 (1989)

    Article  ADS  Google Scholar 

  20. S.W. Lee, H. Shang, R.T. Haasch, V. Petrova, G.U. Lee, Transport and functional behavior of poly(ethylene glycol)-modified nanoporous alumina membranes. Nanotechnology 16, 1335–1340 (2005)

    Article  ADS  Google Scholar 

  21. A.I. Vorobjova, D.L. Shimanovich, K.I. Yanushkevich, S.L. Prischepa, E.A. Outkina, Properties of Ni and Ni–Fe nanowires electrochemically deposited into a porous alumina template. Beilstein J. Nanotechnol 7, 1709–1717 (2016)

    Article  Google Scholar 

  22. T. Yanagishita, H. Masuda, High-throughput fabrication process for highly ordered through-hole porous alumina membranes using two-layer anodization. Electrochim. Acta 184, 80–85 (2015)

    Article  Google Scholar 

  23. D.L. Shimanovich, D.I. Chushkova, In: Physics, Chemistry and Applications of Nanostructures. Proc. Intern. Conf. “Nanomeeting 2013”, Minsk, 2013 May 28–31

  24. V.E. Borisenko, S.V. Gaponenko, V.S. Gurin, C.H. Kam (eds.) (World Scientific Publishing Co Pte Ltd, Singapore, 2013), pp. 366–369

  25. L. Malferrari, A. Jagminiene, G.P. Veronese, F. Odorici, M. Cuffiani, A. Jagminas, Alumina template-dependant growth of cobalt nanowire arrays. Nanotechnol. 149691, 1–8 (2009). https://doi.org/10.1155/2009/149691No.149691

  26. H. Pan, H. Sun, C. Poh, Y. Feng, J. Lin, Single-crystal growth of metallic nanowires with preferred orientation. Nanotechnol 16, 1559–1564 (2005)

    Article  Google Scholar 

  27. G.E.J. Poinern, X.T. Le, M. Hager, T. Becker, D. Fawcett, Electrochemical synthesis, characterisation, and preliminary biological evaluation of an anodic aluminium oxide membrane with a pore size of 100 nanometres for a potential cell culture substrate. Am. J. Biomed. Eng 3(6), 119–131 (2013)

    Google Scholar 

  28. K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. Gösele, Magnetic properties of 100 nm-period nickel nanowire arrays obtained from ordered porous-alumina templates. Nano Lett. 2, 677–680 (2002)

    Article  ADS  Google Scholar 

  29. L. Li Ma, X. Zhang, Z. Li, Li, Ke-chao Zhou, Fabrication and characterization of electrodeposited nanocrystalline Ni–Fe alloys for NiFe2O4 spinel coatings. Trans. Nonferr. Met. Soc. China 25, 146–153 (2015)

    Article  Google Scholar 

  30. K.-M. Yin, C.-C. Lee, Effect of ferrous ion concentration on the electrodeposition of iron–nickel alloys. J. Chem. Technol. Biotechnol 70(4), 337–342 (1997)

    Article  Google Scholar 

  31. N. Zech, E.J. Podlaha, D. Landolt, Anomalous codeposition of iron group metals. I. Experimental results., J. Electrochem. Soc. 146(8), 2886–2900. (1999)

    Article  Google Scholar 

  32. A.M. Nguyen, S. Cercelaru, G. Tremblay, J.C. Perron, P. Hesto. Magnetic and electrical characterizations of thin Ni–Fe and Ni–Fe–Mo films, Thin Solid Films 275(1–2), 231–234 (1996)

    Article  ADS  Google Scholar 

  33. R. Abdel-Karim, Y. Reda, M. Muhammed, S. El-Raghy, M. Shoeib, H. Ahmed, Electrodeposition and characterization of nanocrystalline Ni–Fe alloys. J. Nanomater. (2011). https://doi.org/10.1155/2011/519274(51527)

    Google Scholar 

  34. L. Li-Jing Cheng, Jay, Guo, Entrance effect on ion transport in nanochannels. Microfluid. Nanofluid. 9, 1033–1039 (2010)

    Article  Google Scholar 

  35. W. Sparreboom, A. van den Berg, J.C.T. Eijkel, Principles and applications of nanofluidic transport. Nat. Nanotechnol. 4, 713–720 (2009)

    Article  ADS  Google Scholar 

  36. W. Guan, S.X. Li, M.A. Reed, Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications. Nanotechnology 25, 122001 (2014)

    Article  ADS  Google Scholar 

  37. P. Prioteasa, A. Petica, M. Popa, C. Ilie, T. Visan, Electrochemical deposition of nickel for micro-mechanical system. Rev. Chim 62, 543–548 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to А. I. Vorobjova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobjova, А.I., Shimanovich, D.L., Outkina, Е.А. et al. Highly ordered porous alumina membranes for Ni–Fe nanowires fabrication. Appl. Phys. A 124, 23 (2018). https://doi.org/10.1007/s00339-017-1401-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1401-8

Navigation