Skip to main content
Log in

Ultrahigh sensitive temperature sensor based on graphene-semiconductor metamaterial

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we theoretically describe a nanoscale THz metamaterial, consisting of a graphene H-shaped that is located on an indium antimonide (InSb) substrate. This metamaterial in its simulated transmission spectrum exhibits a filtering effect and at a specific frequency, the percentage of light passing through the metamaterial is greatly reduced. Since the optical properties of graphene and InSb strongly depend on temperature, as the temperature changes, the frequency of resonance is also shifted. Thus we can expect our structure is suitable for ultrahigh sensitive temperature sensors. The temperature sensor presented is very sensitive with a sensitivity of \(1814\,\mathrm {nm}/{^{\circ }\mathrm {C}}\) which is very high compared to other designed structures. This THz temperature sensor can play an important role for high-accurate temperature measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Guan, X. Wang, L.H. Frandsen, Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon MachZehnder interferometer. Opt. Express 24(15), 1634916356 (2016)

    Article  ADS  Google Scholar 

  2. N.N. Klimov, S. Mittal, M. Berger, Z. Ahmed, On-chip silicon waveguide Bragg grating photonic temperature sensor. Opt. Lett. 40(17), 39343936 (2015)

    Article  Google Scholar 

  3. R. Dwivedi, A. Kumar, Ultrahigh-sensitive temperature sensor based on modal interference in a metal-under-clad ridge waveguide with a polymer upper cladding. Appl. Opt. 56(16), 4685–4689 (2017)

    Article  ADS  Google Scholar 

  4. K. Kong, Q. Wei, Q. Liu, S. Wang, Nanoscale temperature sensor based on Fano resonance in metalinsulatormetal waveguide. Opt. Commun. 384, 8588 (2017)

    Article  Google Scholar 

  5. Z. Vafapour, H. Alaei, Subwavelength micro-antenna for achieving slow light at microwave wavelengths via electromagnetically induced transparency in 2D metamaterials. Plasmonics 12(5), 1343–1352 (2017)

    Article  Google Scholar 

  6. L. Jiang, J. Yang, S. Wang, B. Li, M. Wang, Fiber MachZehnder interferometer based on microcavities for high-temperature sensing with high sensitivity. Opt. Lett. 36(19), 37533755 (2011)

    Article  Google Scholar 

  7. I. Hernndez-Romano, D. Monzn-Hernndez, C. Moreno-Hernndez, D. Moreno-Hernandez, J. Villatoro, Highly sensitive temperature sensor based on a polymer-coated microfiber interferometer. IEEE Photon. Technol. Lett. 27(24), 25912594 (2015)

    Google Scholar 

  8. E. Li, X. Wang, C. Zhang, Fiber-optic temperature sensor based on interference of selective higher-order modes. Appl. Phys. Lett. 89(9), 091119 (2006)

    Article  ADS  Google Scholar 

  9. H. Karim, D. Delfin, L.A. Chavez, L. Delfin, R. Martinez, J. Avila, C. Rodriguez, R.C. Rumpf, N. Love, Y. Lin, Metamaterial based passive wireless temperature sensor. Adv. Eng. Mater. (2017). https://doi.org/10.1002/adem.201600741

    Article  Google Scholar 

  10. H. Karim, D. Delfin, M.A. Ishtiaque Shuvo, L.A. Chavez, Concept and model of a metamaterial-based passive wireless temperature sensor for harsh environment applications. IEEE Sens. J. 15(3), 1445–1452 (2015)

    Article  ADS  Google Scholar 

  11. Z. Vafapour, Near infrared biosensor based on classical electromagnetically induced reflectance (Cl-EIR) in a planar complementary metamaterial. Opt. Commun. 387, 1–11 (2017)

    Article  ADS  Google Scholar 

  12. H. Xu, M. Hafezi, J. Fan, J.M. Taylor, G.F. Strouse, Z. Ahmed, Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures. Opt. Express 22(3), 30983104 (2014)

    Article  Google Scholar 

  13. H.T. Kim, M. Yu, Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range. Opt. Express 24(9), 95019510 (2016)

    Article  Google Scholar 

  14. H. Wang, H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, X. Huang, Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference. Opt. Commun. 364, 191194 (2016)

    Google Scholar 

  15. F. Wang, H. Zhu, Y. Li, H. Zhao, X. Wang, Y. Liu, Comparative study on a core-offset fiber temperature sensor between the faraday rotation mirror structure and the double coupling structure. Opt. Commun. 367, 286–291 (2016)

    Article  ADS  Google Scholar 

  16. Q. Liu, S. Li, H. Chen, J. Li, Z. Fan, High-sensitivity plasmonic temperature sensor based on photonic crystal fiber coated with nanoscale gold film. Appl. Phys. Express 8(4), 046701 (2015)

    Article  ADS  Google Scholar 

  17. M. Lim, S. Jin, S.S. Lee, B.J. Lee, Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications. Opt. Express 23(7), A240–A253 (2015)

    Article  ADS  Google Scholar 

  18. R. Messina, P. Ben-Abdallah, Graphene-based photovoltaic cells for near-field thermal energy conversion. Sci. Rep. 3, 1383 (2013). https://doi.org/10.1038/srep01383

    Article  ADS  Google Scholar 

  19. Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782796 (2012)

    Google Scholar 

  20. M.Q. Yang, N. Zhang, M. Pagliaro, Y.J. Xu, Artificial photosynthesis over graphenesemiconductor composites. Are we getting better? Chem. Soc. Rev. 43, 8240–8254 (2014)

    Article  Google Scholar 

  21. O. Ilic, M. Jablan, J.D. Joannopoulos, I. Celanovic, H. Buljan, M. Soljacic, Near-field thermal radiation transfer controlled by plasmons in graphene. Phys. Rev. B 85(15), 155422 (2012)

    Article  ADS  Google Scholar 

  22. V.B. Svetovoy, P.J. van Zwol, J. Chevrier, Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics. Phys. Rev. B 85(15), 155418 (2012)

    Article  ADS  Google Scholar 

  23. T. Chen, S. Li, H. Sun, Metamaterials application in sensing. Sensors 12(3), 2742–2765 (2012)

    Article  Google Scholar 

  24. Y. Wang, Y. Li, J. Wang, J. Li, Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 29(5), 205–212 (2011)

    Article  Google Scholar 

  25. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, Tunable slow light in semiconductor metamaterial in a broad terahertz regime. J. Appl. Phys. 107(9), 093104 (2010)

    Article  ADS  Google Scholar 

  26. J. Han, A. Lakhtakia, Semiconductor split-ring resonators for thermally tunable terahertz metamaterials. J. Mod. Opt. 56(4), 554–557 (2009)

    Article  ADS  Google Scholar 

  27. J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, W. Zhang, Thermal broadband tunable Terahertz metamaterials. Opt. Commun. 284, 31293133 (2011)

    Google Scholar 

  28. L.A. Falkovsky, Optical properties of graphene. J. Phys. Conf. Ser. 129(1), 012004 (2008)

    Article  Google Scholar 

  29. S. Izadshenas, A. Zakery, Z. Vafapour, Tunable slow light in graphene metamaterial in a broad terahertz range. Plasmonics (2016). https://doi.org/10.1007/s11468-016-0484-y

    Article  Google Scholar 

  30. Z. Vafapour, M.R. Forouzeshfard, Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials. Plasmonics 12(5), 1331–1342 (2017)

    Article  Google Scholar 

  31. Z. Sheng, V.V. Varadan, Tuning the effective properties of metamaterials by changing the substrate properties. J. Appl. Phys. 101(1), 014909 (2007)

    Article  ADS  Google Scholar 

  32. Y. Kong, P. Qiu, Q. Wei, W. Quan, S. Wang, W. Qian, Refractive index and temperature nanosensor with plasmonic waveguide system. Opt. Commun. 371, 132137 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zakery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz, A., Zakery, A. Ultrahigh sensitive temperature sensor based on graphene-semiconductor metamaterial. Appl. Phys. A 123, 797 (2017). https://doi.org/10.1007/s00339-017-1399-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1399-y

Navigation