Skip to main content
Log in

Insights from first principles graphene/g-C2N bilayer: gap opening, enhanced visible light response and electrical field tuning band structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Opening up a band gap of the graphene and finding a suitable substrate are two challenges for constituting the nano-electronic equipment. A new two-dimensional layered crystal g-C2N with novel electronic and optical properties can be effectively synthesized via a wet-chemical reaction. And g-C2N can be used as a suitable substrate to open the band gap of graphene as much as 0.239 eV, which is large enough for the band gap opening at room temperature. The physics behind the band gap opening is that g-C2N substrate can produce the inhomogeneous electrostatic potential over the graphene layer. The imposition of external electrical field can effectively tune the electronic properties of the hybrid graphene/g-C2N from the semiconductors to the metal. The hybrid graphene/g-C2N displays an enhanced optical activity compared with the pure g-C2N monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos. I. Grigorieva, A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  3. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)

    Article  ADS  Google Scholar 

  4. P. Avouris, Nano Lett. 10, 4285 (2010)

    Article  ADS  Google Scholar 

  5. M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113, 3766 (2013)

    Article  Google Scholar 

  6. A.H. Castro Neto, N.M.R. Peres, K.S. Novoselov, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  7. V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005)

    Article  ADS  Google Scholar 

  8. T. Ando, J. Phys. Soc. Jpn. 75, 124701 (2006)

    Article  ADS  Google Scholar 

  9. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  10. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Science 315, 1379 (2007)

    Article  ADS  Google Scholar 

  11. A.J. Du, S.C. Smith, J. Phys. Chem. Lett. 2, 73 (2011)

    Article  Google Scholar 

  12. G. Brumfiel, Nature 458, 390 (2009)

    Article  Google Scholar 

  13. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009)

    Article  ADS  Google Scholar 

  14. L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai, Nature 458, 877 (2009)

    Article  ADS  Google Scholar 

  15. F. Guinea, M.I. Katsnelson, A.K. Geim, Nat. Phys. 6, 30 (2010)

    Article  Google Scholar 

  16. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, ACS Nano 2, 2301 (2008)

    Article  Google Scholar 

  17. R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekaer, Nat. Mater. 9, 315 (2010)

    Article  ADS  Google Scholar 

  18. A.J. Du, Z.H. Zhu, S.C. Smith, J. Am. Chem. Soc. 132, 2876 (2010)

    Article  Google Scholar 

  19. S.Y. Zhou, G.H. Gweon, A.V. Fedorov, P.N. First, W.A. De Heer, D.H. Lee, F. Guinea, A.H.C. Neto, A. Lanzara, Nat. Mater. 6, 770 (2007)

    Article  ADS  Google Scholar 

  20. W.J. Zhang, C.T. Lin, K.K. Liu, T. Tite, C.Y. Su, C.H. Chang, Y.H. Lee, C.W. Chu, K.H. Wei, J.L. Kuo, L.J. Li, ACS Nano 9, 7517 (2011)

    Article  Google Scholar 

  21. F. Wang, Y.B. Zhang, C.S. Tian, C. Girit, A. Zettl, M. Crommie, Y.R. Shen, Science 320, 206 (2008)

    Article  ADS  Google Scholar 

  22. Y.B. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)

    Article  ADS  Google Scholar 

  23. M.L. Cohen. Y.-W. Son, S.G. Louie, Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  24. B.Z. Zhou, X.C. Wang, S.J. Dong, K.L. Zhang, W.B. Mi, Carbon 120, 121 (2017)

    Article  Google Scholar 

  25. R. Decker, Y. Wang, V.W. Brar, W. Regan, H.Z. Tsai, Q. Wu, W. Gannett, A. Zettl, M.F. Crommie, Nano Lett. 11, 2291 (2011)

    Article  ADS  Google Scholar 

  26. J. Hass, F. Varchon, J.E. Millán-Otoya, M. Sprinkle, N. Sharma, W.A. de Heer, C. Berger, P.N. First, L. Magaud, E.H. Conrad, Phys. Rev. Lett. 100, 125504 (2008)

    Article  ADS  Google Scholar 

  27. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, Science 327, 662 (2010)

    Article  ADS  Google Scholar 

  28. L. Liao, Y.C. Lin, M.Q. Bao, R. Cheng, J.W. Bai, Y. Liu, Y.Q. Qu, K.L. Wang, Y. Huang, X.F. Duan, Nature 467, 305 (2010)

    Article  ADS  Google Scholar 

  29. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, R.M. Wallace, Appl. Phys. Lett. 99, 122108 (2011)

    Article  ADS  Google Scholar 

  30. Y. Zhang, L. Gomez, F.N. Ishikawa, A. Madaria, K. Ryu, C. Wang, A. Badmaev, C.W. Zhou, J. Phys. Chem. Lett. 1, 3101 (2010)

    Article  Google Scholar 

  31. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5, 722 (2010)

    Article  ADS  Google Scholar 

  32. N. Kharche, S.K. Nayak, Nano Lett. 11, 5274 (2011)

    Article  ADS  Google Scholar 

  33. J. Mahmood, E.K. Lee, M. Jung, D. Shin, I. Jeon, S. Jung, H. Choi, J. Seo, S. Bae, S. Sohn, Nat. Commun. 6, 1 (2015)

    Article  Google Scholar 

  34. Z.D. Zheng, X.C. Wang, W.B. Mi, Carbon 109, 764 (2016)

    Article  Google Scholar 

  35. Z.D. Zheng, X.C. Wang, W.B. Mi, Carbon 117, 393 (2017)

    Article  Google Scholar 

  36. B.Y. Li, W.F. Li, J.M. Perez-Aguilar, R.H. Zhou, Small 13, 12 (2017)

    Google Scholar 

  37. A.J. Du, S. Sanvito, Z. Li, D.W. Wang, Y. Jiao, T. Liao, Q. Sun, Z.H. Zhu, R. Amal, Y.H. Ng, S.C. Smith, J. Am. Chem. Soc. 134, 4393 (2012)

    Article  Google Scholar 

  38. X.R. Li, Y. Dai, Y.D. Ma, S.H. Hana, B.B. Huang, Phys. Chem. Chem. Phys. 16, 4230 (2014)

    Article  Google Scholar 

  39. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  40. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  41. G. Kresse, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  42. J.P. Perdew, K. Burke, M.D. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  43. S.J. Grimme, Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  44. W. Hu, X. Wu, Z. Li, J. Yang, Nanoscale 5, 9062 (2013)

    Article  ADS  Google Scholar 

  45. W. Hu, X. Wu, Z. Li, J. Yang, Phys. Chem. Chem. Phys. 15, 5753–5757 (2013)

    Article  Google Scholar 

  46. R. Zhang, B. Li, J. Yang, J. Phys. Chem. C 119, 2871 (2015)

    Article  Google Scholar 

  47. Y. Baskin, L. Meyer, Phys. Rev. 100, 544 (1955)

    Article  ADS  Google Scholar 

  48. R. Zacharia, H. Ulbricht, T. Hertel, Phys. Rev. B Condens. Matter Mater. Phys. 69, 1 (2004)

    Article  Google Scholar 

  49. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  50. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, W. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Nat. Acad. Sci. USA 102, 10451 (2005)

    Article  ADS  Google Scholar 

  51. Z.Y. Guan, C. Si, S.L. Hu, W.H. Duan, Phys. Chem. Chem. Phys. 18, 12350 (2016)

    Article  Google Scholar 

  52. Z.Y. Guan, C.S. Lian, S.L. Hu, S. Ni, J. Li, W.H. Duan, J. Phys. Chem. C 121, 3654 (2017)

    Article  Google Scholar 

  53. Z.Y. Guan, S. Ni, S.L. Hu, RSC. Adv. 7, 45393 (2017)

    Article  Google Scholar 

  54. W. Hu, J.L. Yang, T. Wang, J.L. Yang, J. Mater. Chem. C 3, 4756 (2015)

    Article  Google Scholar 

  55. W. Hu, T. Wang, R.Q. Zhang, J.L. Yang, J. Mater. Chem. C 4, 1776 (2016)

    Article  Google Scholar 

  56. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006)

    Article  ADS  Google Scholar 

  57. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B.L. Dos Santos, J. Nilsson, F. Guinea, A.K. Geim, H.A.C. Neto, Phys. Rev. Lett. 99, 8 (2007)

    Article  Google Scholar 

  58. J.B. Oostinga, H.B. Heersche, X. Liu, A.F. Morpurgo, L.M.K. Vandersypen, Nat. Mater. 7, 151 (2008)

    Article  ADS  Google Scholar 

  59. W. He, Z.Y. Li, J.L. Yang, J.G. Hou, J. Chem. Phys. 129, 024710 (2009)

    Article  ADS  Google Scholar 

  60. K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Phys. Rev. Lett. 102, 100 (2009)

    Article  Google Scholar 

  61. A. Ramasubramaniam, D. Naveh, E. Towe, Phys. Rev. B Condens. Matter Mater. Phys. 84, 1 (2011)

    Google Scholar 

  62. C.R.O. Ivanovskaya, V. Phillips, L.C. Zobelli, A. Infante, I.C. Jacquet, E. Garcia, V. Fusil, S. Guiblin, N. Dkhil, B. Barthélémy, A. Bibes, Nat. Mater. 13, 345 (2014)

    Article  ADS  Google Scholar 

  63. N. Lu, H. Guo, L. Li, J. Dai, L. Wang, W.N. Mei, X. Wu, X.C. Zeng, Nanoscale 6, 2879 (2014)

    Article  ADS  Google Scholar 

  64. K. Khoo, M. Mazzoni, S. Louie, Phys. Rev. B Condens. Matter Mater. Phys. 69, 1 (2004)

    Article  Google Scholar 

  65. C.H. Park, S.G. Louie, Nano Lett. 8, 2200 (2008)

    Article  ADS  Google Scholar 

  66. K. Dolui, C. Das Pemmaraju, S. Sanvito, ACS Nano 6, 4823 (2012)

    Article  Google Scholar 

  67. M. Gajdoš, K. Hummer, G. Kress, J. Furthmüller, F. Bechstedt, Phys. Rev. B Condens. Matter Mater. Phys. 73, 045112 (2006)

    Article  ADS  Google Scholar 

  68. X. Li, J. Zhao, J.L. Yang, Sci. Rep. 3, 1858 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Shuanglin Hu and Prof. Wenhui Duan for useful discussions. This work is partially supported by the National Key Basic Research Program, and by USTCSCC, SCCAS, Tianjin, Shanghai Supercomputer Centers and Tsinghua Supercomputer Centers are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyong Guan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 721 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, Z., Ni, S. Insights from first principles graphene/g-C2N bilayer: gap opening, enhanced visible light response and electrical field tuning band structure. Appl. Phys. A 123, 678 (2017). https://doi.org/10.1007/s00339-017-1314-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1314-6

Navigation