Skip to main content
Log in

Temperature dependence of the bulk and surface properties of liquid Zn–Cd alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of temperature on the bulk and surface properties of liquid Zn–Cd alloys have been theoretically investigated, using a combination of self association model, Darken’s thermodynamic equation for diffusion, empirical model for viscosity and a statistical mechanics model. The results from this study show that change in temperature resulted in cross-over effects in bulk and surface properties. We also found that with an increase in temperature, a pronounced asymmetry of viscosity isotherm is significantly reduced, and viscosity isotherm exhibited anomalous behaviour. Our results reveal that the homocoordination tendency in Zn–Cd liquid alloys is not strong and reduces with increasing temperature. The study further suggests a pronounced segregation of Cd-atoms at the surface of Zn–Cd liquid alloys and the extent of segregation reduces with temperature. We as well found that, in addition to the reported understanding that size-factor determines the compositional location of asymmetry of the viscosity isotherm, temperature is an operating parameter that has effect, not only on the composition of asymmetry, but also on the magnitude of asymmetry. In all the properties investigated, the most pronounced effect of temperature (52.9\(\%\)) is on the viscosity while the least effect (7.1\(\%\)) is on the surface tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Kumar, D.P. Ojha, A first principle study of Cd–Zn binary alloy. Armen. J. Phys. 3(3), 203–217 (2010)

    Google Scholar 

  2. K. Nagamani, M.V. Reddy, Y. Lingappa, K.T.R. Reddy, R.W. Miles, Physical properties of Zn\(_x\)Cd\(_{1-x}\)S nanocrystalline layers synthesized by solution growth method. Int. J. Optoelectron. 2(2), 1–4 (2012)

    Article  Google Scholar 

  3. I. Koirala, B.P. Singh, I.S. Jha, Transport and surface properties of molten Cd–Zn alloys. J. Inst. Sci. Tech. 19(1), 14–18 (2014)

    Article  Google Scholar 

  4. R.P. Koirala, B.P. Singh, I.S. Jha, D. Adhikari, Thermodynamic, structural and surface properties of liquid Cd–Zn alloys. J. Mol. Liq. 179, 60–66 (2013)

    Article  Google Scholar 

  5. R.N. Singh, F. Sommer, Temperature dependence of the thermodynamic functions of strongly interacting liquid alloys. J. Phys. Condens. Matter. 4, 5345–5358 (1992)

    Article  ADS  Google Scholar 

  6. S. Chung, W. Jung, J. Pak, Activity measurement of Zn in liquid Zn–Cd alloy using EMF method. Korean J. Mater. Res. 12(4), 283–289 (2002)

    Article  Google Scholar 

  7. I. Katayama, K. Maki, Y. Fukuda, A. Ebara, T. Iida, Thermodynamic activity of liquid Zn–Cd alloys studied by EMF method with zirconia solid electrolyte. Mater. T. Jim. 38(2), 119–122 (1997)

    Article  Google Scholar 

  8. Solder Information. http://www.globalspec.com/learnmore/manufacturing_process_equipment/welding_equipment_supplies/solder. Accessed 29 April 2016

  9. O. Akinlade, O.E. Awe, Bulk and surface properties of liquid Ga–Tl and Zn–Cd alloys. Int. J. Mater. Res. 97(4), 377–381 (2006)

    Google Scholar 

  10. B. Saatci, M. Ari, M. Gunduz, F. Meydaneri, M. Bozoklu, S. Durmus, Thermal and electrical conductivities of Zn–Cd alloys. J. Phys. Condens. Matter. 18(47), 10643–10653 (2006)

    Article  ADS  Google Scholar 

  11. O. Akinlade, R.N. Singh, Surface segregation and surface tension in liquid Fe–Cu alloys. Z. Metallkd. 92(9), 1111–1113 (2001)

    Google Scholar 

  12. O. Akinlade, A.O. Boyo, B.R. Ijaduola, Demixing tendencies in some Sn-based liquid alloys. J. Alloy. Compd. 290, 191–196 (1999)

    Article  Google Scholar 

  13. G. Wilde, R. Willnecker, R.N. Singh, F. Sommer, The metastable miscibility gap in the system Fe–Cu. Z. Metallkd. 88(10), 804–809 (1997)

    Google Scholar 

  14. Y.A. Odusote, A.I. Popoola, S.S. Oluyamo, Bulk and surface properties of demixing liquid Al–Sn and Sn–Tl alloys. Appl. Phys. A (2016). doi:10.1007/s00339-015-9591-4

  15. I. Egry, E. Ricci, R. Novakovic, S. Ozawa, Surface tension of liquid metals and alloys—recent developments. Adv. Colloid. Interfac. 159(2), 198–212 (2010)

    Article  Google Scholar 

  16. T.B. Massalski, P.R. Subramanian, H. Okamoto, L. Kacprzak (eds.), Binary Alloy Phase Diagrams, vol. 1–3, 2nd edn. (ASM, International Materials Park, OH, 1990)

  17. L.A. Zabdyr, Phase equilibria in ternary Cd–Sb–Zn system. CALPHAD 21, 349–358 (1997)

    Article  Google Scholar 

  18. R.N. Singh, F. Sommer, A Simple model for demixing binary liquid alloy. Z. Metallkd. 83(7), 533–540 (1992)

    Google Scholar 

  19. R.N. Singh, F. Sommer, Thermodynamic investigation of viscosity and diffusion in binary liquid alloys. Phys. Chem. Liq. 36, 17–28 (1998)

    Article  Google Scholar 

  20. A.B. Bhatia, R.N. Singh, A quasi-lattice theory for compound forming molten alloys. Phys. Chem. Liq. 13, 177–190 (1984)

    Article  Google Scholar 

  21. L.C. Prasad, R.N. Singh, Surface segregation and concentration fluctuations at the liquid-vapor interface of molten Cu–Ni alloys. Phys. Rev. B 44, 13768–13771 (1991)

    Article  ADS  Google Scholar 

  22. L.C. Prasad, A. Mikula, Surface segregation and surface tension in Al–Sn–Zn liquid alloys. Phys. B 373, 142–149 (2006)

    Article  ADS  Google Scholar 

  23. R. Novakovic, D. Zivkovic, Thermodynamics and surface properties of liquid Ga-X (X = Sn, Zn) alloys. J. Mater. Sci. 40, 2251–2257 (2005)

    Article  ADS  Google Scholar 

  24. A.B. Bhatia, D.E. Thornton, Structural aspects of the electrical resistivity of binary alloys. Phys. Rev. B 2(8), 3004–3012 (1970)

    Article  ADS  Google Scholar 

  25. O. Akinlade, R.N. Singh, F. Sommer, Thermodynamic investigation of viscosity in Cu–Bi and Bi–Zn liquid alloys. J. Alloy. Compd. 267, 195–198 (1998)

    Article  Google Scholar 

  26. O.E. Awe, Y.A. Odusote, L.A. Hussain, O. Akinlade, Temperature dependence of thermodynamic properties of Si–Ti binary liquid alloys. Thermochim. Acta. 519, 1–5 (2011)

    Article  Google Scholar 

  27. R.H. Fowler, E.A. Guggenheim, Statistical Thermodynamics (Cambridge University Press, Cambridge, 1960)

    MATH  Google Scholar 

  28. E.A. Guggenheim, Mixtures (Oxford University Press, London, 1952)

    MATH  Google Scholar 

  29. O. Akinlade, R.N. Singh, Bulk and surface properties of liquid In–Cu alloys. J. Alloy. Compd. 333, 84–90 (2002)

    Article  Google Scholar 

  30. O.E. Awe, O. Akinlade, L.A. Hussain, Thermodynamic investigations of Bi–Cd, In–Pb and Ni–Pd liquid alloys. Z. Metallkd. 96, 89–93 (2005)

    Article  Google Scholar 

  31. R. Novakovic, T. Tanaka, Bulk and surface properties of Al–Co and Co–Ni liquid alloys. Phys. B 371, 223–231 (2006)

    Article  ADS  Google Scholar 

  32. L.C. Prasad, R.N. Singh, Surface segregation and concentration fluctuations at the liquid-vapor interface of molten Cu–Ni alloys. Phys. Rev. B. 44(24), 13768–13771 (1991)

    Article  ADS  Google Scholar 

  33. R.N. Singh, I.K. Mishra, V.N. Singh, Local order in Cd-based liquid alloys. J. Phys. Condens. Matter. 2, 8457–8462 (1990)

    Article  ADS  Google Scholar 

  34. R.N. Singh, I.K. Mishra, Conditional probabilities and thermodynamics of binary. Phys. Chem. Liq. 18(4), 303–319 (1988)

    Article  Google Scholar 

  35. R. Novakovic, E. Ricci, D. Giuranno, F. Gnecco, Surface properties of Bi–Pb liquid alloys. Surf. Sci. 515, 377–389 (2002)

    Article  ADS  Google Scholar 

  36. L.C. Prasad, A. Mikula, Effect of temperature on the surface properties of Cu–Sn liquid alloys. J. Alloy. Compd. 314, 193–197 (2001)

    Article  Google Scholar 

  37. A.B. Bhatia, W.H. Hargrove, Concentration fluctuations and thermodynamic properties of some compound forming binary molten systems. Phys. Rev. B. 10(3), 3186–3196 (1974)

    Article  ADS  Google Scholar 

  38. J. Tomiska, Thermodynamic activities of alloys. Thermochim. Acta. 314, 145–153 (1998)

    Article  Google Scholar 

  39. A. Yakymovych, Y. Plevachuk, S. Mudry, J. Brillo, H. Kobataka, H. Ipser, Phys. Chem. Liq. (2014). doi:10.1080/00319104.2013.876639

  40. S. Gruner, W. Hoyer, The dynamic viscosity of liquid Cu–Si alloys. J. Alloy. Compd. 460(1—-2), 496–499 (2008)

    Article  Google Scholar 

  41. S.J. Cheng, X.F. Bian, X.B. Qin, P.C. Si, Temperature dependence of the viscosity of In–Sb alloy melts. Indian J. Eng. Mater. S. 11(60), 521–524 (2004)

    Google Scholar 

  42. M. Tan, B. Xiufang, X. Xianying, Z. Yanning, G. Jing, S. Baoan, Correlation between viscosity of molten CuSn alloys and phase diagram. Physica B 387(1), 1–5 (2007)

    Article  ADS  Google Scholar 

  43. L.C. Prasad, R.N. Singh, V.N. Singh, G.P. Singh, Correlation between bulk and surface properties of AgSn liquid alloys. J. Phys. Chem. B 102, 921–926 (1998)

    Article  Google Scholar 

  44. L.C. Prasad, R.N. Singh, G.P. Singh, The role of size effects on surface properties. J. Phys. Chem. Liq. 27(3), 179–185 (1994)

    Article  Google Scholar 

  45. O.E. Awe, O. Akinlade, L.A. Hussain, Thermodynamic properties of liquid Te–Ga and Te–Tl alloys. J. Alloy. Compd. 361, 227–233 (2003)

    Article  Google Scholar 

  46. T. IIda, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1988)

  47. W. Ptak, M. Kucharski, Surface tension of Zn–Cd and Cd–Bi alloys. Arch. Hutn. 19(3), 301–317 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Awe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awe, O.E., Azeez, A.A. Temperature dependence of the bulk and surface properties of liquid Zn–Cd alloys. Appl. Phys. A 123, 363 (2017). https://doi.org/10.1007/s00339-017-0977-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0977-3

Keywords

Navigation