Skip to main content
Log in

CSDA range, stopping power and mean penetration depth energy relationships in some hydrocarbons and biologic materials for 10 eV to 100 MeV with the modified Rohrlich–Carlson model

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, for some hydrocarbons and biological compounds, stopping power formula are presented, being valid for low and intermediate electron energies. In addition, calculation of the continuous slowing down approximation range (CSDA range) from the stopping power is also made. Calculation of the CSDA range for some hydrocarbons: C2H6 (ethane), C4H10 (butane), C6H14 (hexane) C8H18 (octane), C5H5N5 (adenine) and C5H5N5O (guanine) have been introduced for incident electrons in the energy range 30 eV to 1 MeV. The range of electrons has been calculated within the continuous slowing down approximation (CSDA) using modified Rohrlich and Carlson formula of stopping power. Besides, we have calculated the mean penetration depths using a spherical geometric model developed by Bentabet (Vacuum 86:1855–1859, 35). The results have been compared with the other theoretical results, Monte Carlo code such as PENELOPE predictions and semi-empirical results. The calculated results of CSDA ranges for electrons in the energy range from 20 eV to 100 MeV are found to be in good agreement to within 10% with available date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Akkerman, E. Akkerman, Characteristics of electron inelastic interactions in organic compounds and water over the energy range 20–10 000 eV. J. Appl. Phys. 86(10), 5809–5816 (1999)

    Article  ADS  Google Scholar 

  2. J.C. Ashley, Inelastic interactions of low-energy electrons with organic insulators: simple formulae for mean free paths and stopping power. IEEE Trans. Nucl. Sci. 27, 1454–1458 (1980)

    Article  ADS  Google Scholar 

  3. J.C. Ashley, C.J. Tung, R.H. Ritchie, Inelastic interactions of electrons with polystyrene: calculations of mean free paths, stopping powers, and CSDA ranges. IEEE Trans. Nucl. Sci. NS-25, 1566–1570 (1978)

    Article  ADS  Google Scholar 

  4. J.C. Ashley, C.J. Tung, R.H. Ritchie, Stopping power of liquid water for low energy electrons. Radiol. Res. 89, 25–31 (1982)

    Article  Google Scholar 

  5. M.J. Berger, S.M. Seltzer, Stopping powers and ranges of electrons and positrons. National Bureau of Standards Report, NBSIR 82-2550 A (1982)

  6. A. Dalgarno, The stopping powers of atoms. Proc. Phys. Soc. (Lond.) 76, 422–424 (1960)

    Article  ADS  Google Scholar 

  7. P. Gupta, B.I. Jhanwar, S.P. Khare, Stopping power of atmospheric gases for electrons. Physica 79B, 311–321 (1975)

    Google Scholar 

  8. H. Gümüş, Simple stopping power formula for low and intermediate energy electrons. Radiat. Phys. Chem. 72, 7–12 (2005)

    Article  ADS  Google Scholar 

  9. J.A. LaVerne, S.M. Pimblott, Electron energy loss distributions in solid, dry DNA. Radiat. Res. 141, 208–215 (1995)

    Article  Google Scholar 

  10. J.A. LaVerne, S.M. Pimblott, A. Mozumder, Use of dipole oscillator strength in the calculation of the range of electrons in various gases. Radiat. Phys. Chem. 38, 75–81 (1991)

    ADS  Google Scholar 

  11. Z. Tan, Y. Xia, M. Zhao, X. Liu, F. Li, H. Huang, Y. Ji, Electron stopping power and mean free path in organic compounds over the energy range of 20–10 000 eV, Nucl. Instr. Methods B 222, 27–43 (2004)

    Article  ADS  Google Scholar 

  12. S.M. Pimblott, L.D.A. Siebbeles, Energy loss by non-relativistic electrons and positrons in liquid water. Nucl. Instrum. Methods B 194, 237–250 (2002)

    Article  ADS  Google Scholar 

  13. S.M. Pimblott, A. LaVerne, Energy loss by electrons in gaseous saturated hydrocarbons. J. Phys. Chem. 95, 3907–3914 (1991)

    Article  Google Scholar 

  14. F. Rohrlich, B.C. Carlson, Positron–electron differences in energy loss and multiple scattering. Phys. Rev. 93, 38–44 (1954)

    Article  ADS  MATH  Google Scholar 

  15. S.M. Seltzer, M.J. Berger, Evaluation of the collision stopping power of elements and compounds for electrons and positrons. Int. J. Appl. Radiat. Isot. 33, 1189–1218 (1982)

    Article  Google Scholar 

  16. H. Sugiyama, Stopping power formula for intermediate energy electrons. Phys. Med. Biol. 30(4), 331–335 (1985)

    Article  Google Scholar 

  17. C.J. Tung, J.C. Ashley, R.H. Ritchie, Electron inelastic mean free paths and energy losses in solids II. Surf. Sci. 81, 427–439 (1979)

    Article  ADS  Google Scholar 

  18. M. Agrawal, P.B. Pal, D.K. Gupta, V.P. Varshney, Total stopping power formula for low energy electrons. Indian J. Pure Appl. Phys. 29, 326–329 (1991)

    Google Scholar 

  19. J.E. Bateman, A new model for electron ranges in solid materials. Nucl Instrum. Methods B 184, 478–489 (2001)

    Article  ADS  Google Scholar 

  20. M.R. Cleland, T.F. Lisanti, R.A. Galloway, Comparisons of Monte Carlo and ICRU electron energy vs. range equations. Radiat. Phys. Chem. 71, 583–587 (2004)

    Article  ADS  Google Scholar 

  21. T.F. Lisanti, Calculating electron range values mathematically. Radiat. Phys. Chem. 71, 581–584 (2004)

    Article  ADS  Google Scholar 

  22. T. Tabata, P. Andreo, K. Shinoda, An analytic formula for the extrapolated range of electrons in condensed materials. Nucl. Instrum. Methods B 119, 463–470 (1996)

    Article  ADS  Google Scholar 

  23. T. Tabata, V. Moskvin, P. Andreo, V. Lazurik, Y. Rogov, Extrapolated ranges of electrons determined from transmission and projected-range straggling curves. Radiat. Phys. Chem. 64, 161–167 (2002)

    Article  ADS  Google Scholar 

  24. J.R. Young, Penetration of electrons in aluminum oxide films. Phys. Rev. 103, 292–293 (1956)

    Article  ADS  Google Scholar 

  25. J.A. LaVerne, S.M. Pimblott, Energy loss distributions in solid and gaseous hydrocarbons. J. Phys. Chem. 99, 10540–10548 (1995)

    Article  Google Scholar 

  26. M.J. Berger, ESTAR, PSTAR and ASTAR: computer programs for calculating stopping-power and range tables for electrons, protons and helium ions. Report NISTIR 4999 (National Institute of Standards and Technology, Gaithersburg, 1992)

  27. ICRU, Report No. 37, Stopping powers for electrons and positrons, International Commission on Radiation Units and Measurements, Bethesda (1984)

  28. L. Pages, E. Bertel, H. Joffre, L. Sklavenitis, Energy loss, range and bremsstrahlung yield for 10 keV to 10 MeV electrons in various elements and chemical compounds. At. Data 4, 1–127 (1972)

    Article  ADS  Google Scholar 

  29. J.C. Ashley, M.W. Williams, Electron mean free paths in solid organic insulators. Radiat. Res. 81, 364–373 (1980)

    Article  Google Scholar 

  30. J.C. Ashley, V.E. Anderson, Interactions of low-energy electrons with silicon dioxide. J. Electron Spectrosc. Relat. Phenom. 24, 127–148 (1981)

    Article  Google Scholar 

  31. L.R. Painter, E.T. Arakawa, M.W. Williams, J.C. Ashley, Optical properties of polyethylene: measurement and applications. Radiat. Res. 83, 1–18 (1980)

    Article  Google Scholar 

  32. R.H. Ritchie, R.N. Hemm, J.E. Turner, H.A. Wright, The interaction of swift electrons with liquid water, in Proceedings, Sixth Symposium on Microdosimetry, Brussels, Belgium, ed. by J. Booz, H.H. Ebert (Harwood, London, Commission of the European Communities, 1978), pp. 345–354

    Google Scholar 

  33. H. Gümüş, F. Köksal, Effective stopping charges and stopping power calculations for heavy ions. Radiat. Eff. Defects Solids 157, 445–458 (2002)

    Article  ADS  Google Scholar 

  34. H. Sugiyama, Electronic stopping power formula for intermediate energies. Radiat. Eff. 56, 205–212 (1981)

    Article  Google Scholar 

  35. A. Bentabet, Spherical geometric model for absorption electrons/positrons phenomenon: application to the mean penetration depth calculation. Vacuum 86, 1855–1859 (2012)

    Article  ADS  Google Scholar 

  36. W. Lenz, Die ladungsverteilung in Ionen und die Gitterkonstante des Rubidiumbromids nach der Statistischen Methode. Zeitung F. Physik 77, 713–721 (1932)

    Article  ADS  Google Scholar 

  37. H. Jensen, Über die Anwendbarkeit der Statistischen Methode auf Ionengitter. Zeitung. F. Physik 77, 722–745 (1932)

    Article  ADS  Google Scholar 

  38. S. Elkomos, A. Pape, Stopping power calculations for semiconductors. Phys. Rev. B 26, 6739–6746 (1982)

    Article  ADS  Google Scholar 

  39. J. Lindhard, M. Scharff, Energy loss in matter by fast particles of low charge. Kgl. Danske Vidensk. Selsk. Mat.- Fys. Medd. 27 (1953)

  40. S.P. Ahlen, Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles. Rev. Mod. Phys. 52, 121–172 (1980)

    Article  ADS  Google Scholar 

  41. H.H. Andersen, V.P. Ziegler, Hydrogen: Stopping Power and Ranges in All Elements, vol. 3 (Pergamon Press, New York, 1977)

    Google Scholar 

  42. L.R. Peterson, A.E.S. Green, The relation between ionization yields, cross sections and loss functions. J. Phys. B 1, 1131–1140 (1968)

    Article  ADS  Google Scholar 

  43. W.H. Bragg, R. Kleeman, On the alpha particles of radium and their loss of range in passing through various atoms and molecules. Philos. Mag. 10, 318–340 (1905)

    Article  Google Scholar 

  44. J.A. Baker, N.B. Chilton, K.O. Jensen, A.B. Walker, P.G. Coleman, J. Phys. Condens. Matter 3, 4109 (1991)

    Article  ADS  Google Scholar 

  45. Z. Chaoui, N. Bouarissa, Monte Carlo simulation of slow electrons impinging on metals. Phys. Lett. A 297, 432 (2002)

    Article  ADS  Google Scholar 

  46. E. Kreyszig, Advanced Engineering Mathematics, 8th edn. (Wiley, Singapore, 1999)

    MATH  Google Scholar 

  47. ESTAR, Stopping Power and Range Tables for Electron. http://physcs.nist.gov/PhysRefData/Star/Text/ESTAR.html (2003)

  48. A. Akar, H. Gümüş, Electron stopping power in biological compounds for low and intermediate energies with the generalized oscillator strength (GOS) model. Radiat. Phys. Chem. 73, 196–203 (2005)

    Article  ADS  Google Scholar 

  49. F. Salvat, J.M. Fernández-Varea, E. Acosta, J. Sempau. PENELOPE. A code system for Monte Carlo simulation of electron and photon transport (NEA, Data Bank, France, 2005)

  50. F. Salvat, J.M. Fernández-Varea, E. Acosta, J. Sempau, PENELOPE a Code System for Monte Carlo Simulation of Electron and Photon Transport (NEA, Data Bank, France, 2011)

    Google Scholar 

  51. A. Bentabet, Range and stopping power energy relationships for 0.5-30 keV electron beams slowing down in solids: analytical model. Modern Phys. Lett. 28, 1 (2014)

    Google Scholar 

  52. S. Valkealahti, R.M. Nieminen, Monte-Carlo calculations of keV electron and positron slowing down in solids. Appl. Phys. A 32, 95–106 (1983)

    Article  ADS  Google Scholar 

  53. A. Akar, H. Gümüş, N.T. Okumuşoğlu, Electron inelastic mean free path formula and CSDA-range calculation in biological compounds for low and intermediate energies. Appl. Radiat. Isot. 64, 543–550 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Gümüş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gümüş, H., Bentabet, A. CSDA range, stopping power and mean penetration depth energy relationships in some hydrocarbons and biologic materials for 10 eV to 100 MeV with the modified Rohrlich–Carlson model. Appl. Phys. A 123, 334 (2017). https://doi.org/10.1007/s00339-017-0874-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0874-9

Keywords

Navigation