Skip to main content
Log in

Hot compression deformation behavior and a modified physically-based constitutive model of Cu-6 %Ag alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In order to reveal the flow characteristics of Cu-6 %Ag alloy on the condition of hot deformation, the isothermal compression experiments are carried out at the temperatures of 973–1123 K under strain rates of 0.01–10 s−1. The effects of deformation condition on the hot compression deformation behavior are investigated. The low instability strain (ɛ i) behavior at high strain rate (10 s−1) is discussed in this paper. According to the experiment results and analyses, the deformation twinning and inhomogeneous grains are thought to be the possible reasons for low strain cracking. Then, a modified physically based constitutive model is established. The strain for maximum softening rate \( (\varepsilon_{ *} ) \) is quoted in the constitutive equation which is proved that there is a nearly linear relationship between \( { \ln }\varepsilon_{ *} \) and \( { \ln }Z \). What’s more, the correlation coefficient (R) and the average absolute relative error (AARE) are used to evaluate the accuracy of the established constitutive model. The values of R and AARE are 0.99612 and 3.47 %, respectively, which show that the modified constitutive model can exactly reveal the flow stress of Cu-6 %Ag alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Zhang, C. Hu, Q. Zhu, C.G. Ding, H.Y. Qin, Hot compression deformation and constitutive modeling of GH4698 alloy. Mater. Des. 65, 1153–1160 (2015)

    Article  Google Scholar 

  2. X. Luo, L. Kang, Q. Li, Y. Chai, Microstructure and hot compression deformation of the as-cast Mg−5.0Sn−1.5Y−0.1Zr alloy. Appl. Phys. A 120(2), 699–705 (2015)

    Article  ADS  Google Scholar 

  3. Y.C. Lin, X.M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 32(4), 1733–1759 (2011)

    Article  Google Scholar 

  4. A. He, G. Xie, X. Yang, X. Wang, H. Zhang, A physically-based constitutive model for a nitrogen alloyed ultralow carbon stainless steel. Comp. Mater. Sci. 98, 64–69 (2015)

    Article  Google Scholar 

  5. W. Peng, W. Zeng, Q. Wang, H. Yu, Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models. Mater. Des. 51, 95–104 (2013)

    Article  Google Scholar 

  6. A.T. Adorno, M.R. Guerreiro, R.A.G. Silva, Kinetics of Ag-rich precipitates formation in Cu–Al–Ag alloys. Mater. Sci. Eng. A 374(1–2), 170–176 (2004)

    Article  Google Scholar 

  7. Y.Z. Tian, Z.F. Zhang, Microstructures and tensile deformation behavior of Cu-16 wt%Ag binary alloy. Mater. Sci. Eng. A 508(1–2), 209–213 (2009)

    Article  Google Scholar 

  8. Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, T.G. Langdon, Strain hardening behavior of a two-phase Cu–Ag alloy processed by high-pressure torsion. Scr. Mater. 65(6), 477–480 (2011)

    Article  Google Scholar 

  9. Y. Sakai, K. Inoue, T. Asano, H. Wada, H. Maeda, Development of high-strength, high-conductivity Cu–Ag alloys for high-field pulsed magnet use. Appl. Phys. Lett. 59(23), 2965–3967 (1991)

    Article  ADS  Google Scholar 

  10. Y. Sakal, K. Inoue, H. Maeda, New high-strength, high-conductivity Cu–Ag alloy sheets. Acta Metall. Mater. 43(4), 1517–1522 (1995)

    Article  Google Scholar 

  11. Y. Sakal, H.J. Schneider, Ultra-high strength, high conductivity Cu–Ag alloy wires. Acta Metall. Mater. 45(3), 1017–1023 (1997)

    Article  Google Scholar 

  12. A. Benghalem, D.G. Morris, Microstructure and strength of wire-drawn Cu–Ag filamentary composites. Acta Mater. 45(1), 397–406 (1997)

    Article  Google Scholar 

  13. J.B. Liu, L. Zhang, D.W. Yao, L. Meng, Microstructure evolution of Cu/Ag interface in the Cu–6 wt% Ag filamentary nanocomposite. Acta Mater. 59(3), 1191–1197 (2011)

    Article  Google Scholar 

  14. D.W. Yao, L.N. Song, A.P. Dong, L.T. Wang, L. Zhang, L. Meng, The role of Ag precipitates in Cu-12 wt% Ag. Mater. Sci. Eng. A 558, 607–610 (2012)

    Article  Google Scholar 

  15. M.H. Wang, L. Huang, M.L. Chen, Y.L. Wang, Processing map and hot working mechanisms of Cu–Ag alloy in hot compression process. J. Cent. South. Univ. 22(3), 821–828 (2015)

    Article  Google Scholar 

  16. M.S. Chen, Y.C. Lin, X.S. Ma, The kinetics of dynamic recrystallization of 42CrMo steel. Mater. Sci. Eng. A 556, 260–266 (2012)

    Article  Google Scholar 

  17. Z. Zeng, L. Chen, F. Zhu, X. Liu, Dynamic recrystallization behavior of a heat-resistant martensitic stainless steel 403 Nb during hot deformation. J. Mater. Sci. Technol. 27(10), 913–919 (2011)

    Article  Google Scholar 

  18. H. Mirzadeh, A. Najafizadeh, Prediction of the critical conditions for initiation of dynamic recrystallization. Mater. Des. 31(3), 1174–1179 (2010)

    Article  Google Scholar 

  19. J.J. Jonas, X. Quelennec, L. Jiang, É. Martin, The Avrami kinetics of dynamic recrystallization. Acta Mater. 57(9), 2748–2756 (2009)

    Article  Google Scholar 

  20. E.S. Puchi-Cabrera, J.D. Guérin, M. Dubar, M.H. Staia, J. Lesage, D. Chicot, Constitutive description for the design of hot-working operations of a 20MnCr5 steel grade. Mater. Des. 62, 255–264 (2014)

    Article  Google Scholar 

  21. X. Li, L. Duan, J. Li, X. Wu, Experimental study and numerical simulation of dynamic recrystallization behavior of a micro-alloyed plastic mold steel. Mater. Des. 66, 309–320 (2015)

    Article  Google Scholar 

  22. A. Laasraoui, J.J. Jonas, Recrystallization of austenite after deformation at high temperatures and strain rates—analysis and modeling. Metall. Mater. Trans. A 22, 1545–1588 (1991)

    Article  ADS  Google Scholar 

  23. Y.C. Lin, X.M. Chen, D.X. Wen, M.S. Chen, A physically-based constitutive model for a typical nickel-based superalloy. Comp. Mater. Sci. 83, 282–289 (2014)

    Article  Google Scholar 

  24. A. Najafizadeh, Predicting the critical stress for initiation of dynamic recrystallization. ISIJ Int. 46(11), 1679–1684 (2006)

    Article  Google Scholar 

  25. L. Wang, F. Liu, Q. Zuo, C.F. Chen, Prediction of flow stress for N08028 alloy under hot working conditions. Mater. Des. 47, 737–745 (2013)

    Article  Google Scholar 

  26. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, K.V. Kasiviswanathan, Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel. Mater. Sci. Eng. A 500(1–2), 114–121 (2009)

    Article  Google Scholar 

  27. Z.L. Zhao, H. Li, M.W. Fu, H.Z. Guo, Z.K. Yao, Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing. J. Alloys. Comp. 617, 525–533 (2014)

    Article  Google Scholar 

  28. D. Dong, F. Chen, Z. Cui, A physically-based constitutive model for SA508-III steel: modeling and experimental verification. Mater. Sci. Eng. A 634, 103–115 (2015)

    Article  Google Scholar 

  29. M.H. Wang, W.H. Wang, J.J. Dong, L.H. Zhang, Y.P. Li, A. Chiba, Quantitative analysis of work hardening and dynamic softening behaviors of Cu-6 wt pct Ag binary alloy based on true stress vs strain curves. Acta. Metall. Sin-Engl. 25(6), 420–434 (2012)

    Google Scholar 

  30. Y.C.Y. Sung-II Kim, Dynamic recrystallization behavior of AISI 304 stainless steel. Mater. Sci. Eng. A 311(1–2), 108–113 (2001)

    Google Scholar 

  31. G.Z. Quan, L. Zhao, T. Chen, Y. Wang, Y.P. Mao, W.Q. Lv, J. Zhou, Identification for the optimal working parameters of as-extruded 42CrMo high-strength steel from a large range of strain, strain rate and temperature. Mater. Sci. Eng. A 538, 364–373 (2012)

    Article  Google Scholar 

  32. Y.C. Lin, M.S. Chen, J. Zhong, Prediction of 42CrMo steel flow stress at high temperature and strain rate. Mech. Res. Commun. 35, 142–150 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. CDJZR14130006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menghan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Wang, M., Liu, X. et al. Hot compression deformation behavior and a modified physically-based constitutive model of Cu-6 %Ag alloy. Appl. Phys. A 122, 387 (2016). https://doi.org/10.1007/s00339-016-9956-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9956-3

Keywords

Navigation