Skip to main content
Log in

Three-dimensional nanohelices for chiral photonics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We discuss the tailoring of linear chiroptical effects in three-dimensional plasmonic nanohelices by means of challenging technological nanoscaling approaches, allowing the operation of this metamaterial in the optical frequency range. The growth dynamics involved in focused ion and electron beam-induced deposition have been extensively studied and targeted to the realization of complex 3D structures where intrinsic chirality and spatial anisotropy can be controlled at the nanoscale level, toward miniaturized chiral photonics for application in optoelectronics and biological detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.-D. Turner, M. Saba, Q. Zhang, B.-P. Cumming, G.E. Schröder Turk, M. Gu, Miniature chiral beam-splitter based on Gyroid photonic crystals. Nat. Photonics 7, 801–805 (2013)

    Article  ADS  Google Scholar 

  2. J.-K. Gansel, K. Justyna, M. Thiel, M.-S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009)

    Article  ADS  Google Scholar 

  3. V.-K. Valev, J.-J. Baumberg, C. Sibilia, T. Verbiest, Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 25, 2517–2534 (2013)

    Article  Google Scholar 

  4. M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto, A. Passaseo, Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition. Adv. Opt. Mater. 2, 154–161 (2013)

    Article  Google Scholar 

  5. M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. DeGiorgi, D. Sanvitto, A. Passaseo, Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies. ACS Photonics 2, 105–114 (2015)

    Article  Google Scholar 

  6. M. Esposito, V. Tasco, F. Todisco, A. Benedetti, M. Cuscunà, D. Sanvitto, A. Passaseo, Triple-helical nanowires by tomographic rotatory growth for chiral photonics. Nat. Commun. 6, 1–7 (2015)

    Google Scholar 

  7. A.-G. Mark, J.-G. Gibbs, T.-C. Lee, P. Fischer, Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013)

    Article  ADS  Google Scholar 

  8. T. Tao, J.-S. Ro, J. Melngailis, Z. Xue, H.-D. Kaesz, Focused ion beam induced deposition of platinum. J. Vac. Sci. Technol. B 8, 1826–1829 (1990)

    Article  Google Scholar 

  9. T. Bret, I. Utke, P. Hoffmann, Influence of the beam scan direction during focused electron beam induced deposition of 3D nanostructures. Microelectron. Eng. 78, 307–313 (2005)

    Article  Google Scholar 

  10. I. Utke, P. Hoffmann, J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B 26, 1197–1276 (2008)

    Article  Google Scholar 

  11. Y.-R. Choi, P.-D. Rack, S.-J. Randolph, D.-A. Smith, D.-C. Joy, Pressure effect of growing with electron beam-induced deposition with tungsten hexafluoride and tetraethylorthosilicate precursor. Scanning 28, 311–318 (2006)

    Article  Google Scholar 

  12. M. Tanaka, M. Shimojo, K. Mitsuishi, K. Furuya, The size dependence of the nano-dots formed by electron-beam-induced deposition on the partial pressure of the precursor. Appl. Phys. A 78, 543–546 (2004)

    Article  ADS  Google Scholar 

  13. G.-J.-C. Maxwell, Colours in metal glasses and metal films. Philos. Trans. R. Soc. Lond. Sect. A 3, 385–420 (1904)

    ADS  MATH  Google Scholar 

  14. C. Wenshan, C.V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2009)

    Google Scholar 

  15. W.F. van Dorp, C.W. Hagen, A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104, 08130 (2008)

    Google Scholar 

  16. W.L. Barnes, Surface plasmon–polariton length scales: a route to sub-wavelength optics. J. Opt. A Pure Appl. Opt. 8, S87–S93 (2006)

    Article  ADS  Google Scholar 

  17. E. Prodan, C. Radloff, N.J. Halas, P.A. Nordlander, A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was partially supported by the National Projects PON ‘Beyond Nano’ and MARINE and by the ERC project POLAFLOW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Tasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasco, V., Esposito, M., Todisco, F. et al. Three-dimensional nanohelices for chiral photonics. Appl. Phys. A 122, 280 (2016). https://doi.org/10.1007/s00339-016-9856-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9856-6

Keywords

Navigation