Skip to main content

Advertisement

Log in

Review of magnesium hydride-based materials: development and optimisation

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnesium hydride has been studied extensively for applications as a hydrogen storage material owing to the favourable cost and high gravimetric and volumetric hydrogen densities. However, its high enthalpy of decomposition necessitates high working temperatures for hydrogen desorption while the slow rates for some processes such as hydrogen diffusion through the bulk create challenges for large-scale implementation. The present paper reviews fundamentals of the Mg–H system and looks at the recent advances in the optimisation of magnesium hydride as a hydrogen storage material through the use of catalytic additives, incorporation of defects and an understanding of the rate-limiting processes during absorption and desorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Paskevicius, D.A. Sheppard, C.E. Buckley, Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J. Am. Chem. Soc. 132(14), 5077–5083 (2010)

    Article  Google Scholar 

  2. J.F. Stampfer, C.E. Holley, J.F. Suttle, The magnesium-hydrogen system1-3. J. Am. Chem. Soc. 82(14), 3504–3508 (1960)

    Article  Google Scholar 

  3. P. Chen, M. Zhu, Recent progress in hydrogen storage. Mater. Today 11(12), 36–43 (2008)

    Article  Google Scholar 

  4. C. Zlotea, M. Sahlberg, S. Özbilen, P. Moretto, Y. Andersson, Hydrogen desorption studies of the Mg24Y5–H system: formation of Mg tubes, kinetics and cycling effects. Acta Mater. 56(11), 2421–2428 (2008)

    Article  Google Scholar 

  5. T.K. Nielsen, K. Manickam, M. Hirscher, F. Besenbacher, T.R. Jensen, Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. ACS Nano 3(11), 3521–3528 (2009)

    Article  Google Scholar 

  6. A.F. Gross, C.C. Ahn, S.L. Van Atta, P. Liu, J.J. Vajo, Fabrication and hydrogen sorption behaviour of nanoparticulate MgH2 incorporated in a porous carbon host. Nanotechnology 20(20), 204005 (2009)

    Article  ADS  Google Scholar 

  7. S. Zhang, A.F. Gross, S.L. Van Atta, M. Lopez, P. Liu, C.C. Ahn, J.J. Vajo, C.M. Jensen, The synthesis and hydrogen storage properties of a MgH2 incorporated carbon aerogel scaffold. Nanotechnology 20(20), 204027 (2009)

    Article  ADS  Google Scholar 

  8. J. Huot, D.B. Ravnsbæk, J. Zhang, F. Cuevas, M. Latroche, T.R. Jensen, Mechanochemical synthesis of hydrogen storage materials. Prog. Mater. Sci. 58(1), 30–75 (2013)

    Article  Google Scholar 

  9. C.J. Webb, A review of catalyst-enhanced magnesium hydride as a hydrogen storage material. J. Phys. Chem. Solids 84, 96–106 (2015)

    Article  ADS  Google Scholar 

  10. R.A. Varin, L. Zbroniec, M. Polanski, J. Bystrzycki, A review of recent advances on the effects of microstructural refinement and nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides. Energies 4(1), 1–25 (2010)

    Article  Google Scholar 

  11. M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, R. Bormann, Hydrogen storage in magnesium-based hydrides and hydride composites. Scr. Mater. 56(10), 841–846 (2007)

    Article  Google Scholar 

  12. F. Cheng, Z. Tao, J. Liang, J. Chen, Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chem. Commun. 48(59), 7334–7343 (2012)

    Article  Google Scholar 

  13. C. Zlotea, M. Latroche, Role of nanoconfinement on hydrogen sorption properties of metal nanoparticles hybrids. Colloids Surf. A 439, 117–130 (2013)

    Article  Google Scholar 

  14. P. Vajeeston, P. Ravindran, B.C. Hauback, H. Fjellvåg, A. Kjekshus, S. Furuseth, M. Hanfland, Structural stability and pressure-induced phase transitions in MgH2. Phys. Rev. B 73(22), 224102 (2006)

    Article  ADS  Google Scholar 

  15. J. Huot, I. Swainson, R. Schulz, Phase transformation in magnesium hydride induced by ball milling. Annales de Chimie 31(1), 135–144 (2006)

    Article  Google Scholar 

  16. W.H. Zachariasen, C.E. Holley, J.F. Stamper Jnr, Neutron diffraction study of magnesium deuteride. Acta Crystallogr. 16(5), 352–353 (1963)

    Article  Google Scholar 

  17. M. Bortz, B. Bertheville, G. Böttger, K. Yvon, Structure of the high pressure phase γ-MgH2 by neutron powder diffraction. J. Alloys Compd. 287(1–2), L4–L6 (1999)

    Article  Google Scholar 

  18. P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvåg, Pressure-Induced Structural Transitions in MgH2. Phys Rev Lett 89(17), 175506 (2002)

    Article  ADS  Google Scholar 

  19. P. Vajeeston, P. Ravindran, H. Fjellvag, Chemical Bonding in Hydrides, in Advances in Chemistry Research, ed. by J.C. Taylor (Nova Science Publishers, New York City, 2011), pp. 177–200

    Google Scholar 

  20. D. Moser, G. Baldissin, D.J. Bull, D.J. Riley, I. Morrison, D.K. Ross, W.A. Oates, D. Noréus, The pressure–temperature phase diagram of MgH2 and isotopic substitution. J. Phys.: Condens. Matter 23(30), 305403 (2011)

    Google Scholar 

  21. M. Wagemans, J.H. van Lenthe, P.E. de Jongh, A.J. van Dillen, K.P. de Jong, Hydrogen Storage in Magnesium clusters: quantum chemical study. J. Am. Chem. Soc. 127, 16675–16680 (2005)

    Article  Google Scholar 

  22. S. Cheung, W.Q. Deng, A.C. van Duin, W.A. Goddard 3rd, ReaxFF(MgH) reactive force field for magnesium hydride systems. J. Phys. Chem. A 109(5), 851–859 (2005)

    Article  Google Scholar 

  23. V. Bérubé, G. Radtke, M. Dresselhaus, G. Chen, Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int. J. Energy Res. 31(6–7), 637–663 (2007)

    Article  Google Scholar 

  24. K.C. Kim, B. Dai, J. Karl Johnson, D.S. Sholl, Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Nanotechnology 20(20), 204001 (2009)

    Article  ADS  Google Scholar 

  25. Z. Zhao-Karger, J. Hu, A. Roth, D. Wang, C. Kubel, W. Lohstroh, M. Fichtner, Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chem. Commun. 46(44), 8353–8355 (2010)

    Article  Google Scholar 

  26. Z. Wu, M.D. Allendorf, J.C. Grossman, Quantum monte carlo simulation of nanoscale MgH2 cluster thermodynamics. J. Am. Chem. Soc. 131(39), 13918–13919 (2009)

    Article  Google Scholar 

  27. A.C. Buckley, D.J. Carter, D.A. Sheppard, C.E. Buckley, Density functional theory calculations of magnesium hydride: a comparison of bulk and nanoparticle thermodynamics. J. Phys. Chem. C 116(33), 17985–17990 (2012)

    Article  Google Scholar 

  28. J.J. Vajo, F. Mertens, C.C. Ahn, R.C. Bowman, B. Fultz, Altering hydrogen storage properties by hydride destabilization through alloy formation: LiH and MgH2 destabilized with Si. J. Phys. Chem. B 108(37), 13977–13983 (2004)

    Article  Google Scholar 

  29. J.J. Vajo, G.L. Olson, Hydrogen storage in destabilized chemical systems. Scr. Mater. 56(10), 829–834 (2007)

    Article  Google Scholar 

  30. J.C. Crivello, T. Nobuki, S. Kato, M. Abe, T. Kuji, Hydrogen absorption properties of the -Mg17Al12 phase and its Al-richer domains. J. Alloys Compd. 446–447, 157–161 (2007)

    Article  Google Scholar 

  31. Q.A. Zhang, H.Y. Wu, Hydriding behavior of Mg17Al12 compound. Mater. Chem. Phys. 94(1), 69–72 (2005)

    Article  Google Scholar 

  32. S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, R. Schulz, Hydriding behavior of Mg–Al and leached Mg–Al compounds prepared by high-energy ball-milling. J. Alloys Compd. 297, 282–293 (2000)

    Article  Google Scholar 

  33. A. Andreasen, M.B. Sørensen, R. Burkarl, B. Møller, A.M. Molenbroek, A.S. Pedersen, J.W. Andreasen, M.M. Nielsen, T.R. Jensen, Interaction of hydrogen with an Mg–Al alloy. J. Alloys Compd. 404–406, 323–326 (2005)

    Article  Google Scholar 

  34. K. Klyukin, M.G. Shelyapina, D. Fruchart, Hydrogen induced phase transition in magnesium: An Ab initio study. J. Alloys Compd. 580, S10–S12 (2013)

    Article  Google Scholar 

  35. X.H. Tan, L.Y. Wang, C.M.B. Holt, B. Zahiri, M.H. Eikerling, D. Mitlin, Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity. Phys. Chem. Chem. Phys. 14(31), 10904–10909 (2012)

    Article  Google Scholar 

  36. L.P.A. Mooij, A. Baldi, C. Boelsma, K. Shen, M. Wagemaker, Y. Pivak, H. Schreuders, R. Griessen, B. Dam, Interface energy controlled thermodynamics of nanoscale metal hydrides. Adv. Energy Mat. 1(5), 754–758 (2011)

    Article  Google Scholar 

  37. D. Korablov, F. Besenbacher, T.R. Jensen, Ternary compounds in the magnesium–titanium hydrogen storage system. Int. J. Hydrogen Energy 39(18), 9700–9708 (2014)

    Article  Google Scholar 

  38. P. Kalisvaart, B. Shalchi-Amirkhiz, R. Zahiri, B. Zahiri, X. Tan, M. Danaie, G. Botton, D. Mitlin, Thermodynamically destabilized hydride formation in “bulk” Mg-AlTi multilayers for hydrogen storage. Phys. Chem. Chem. Phys. 15(39), 16432–16436 (2013)

    Article  Google Scholar 

  39. C. Zhou, Z.Z. Fang, J. Lu, X. Luo, C. Ren, P. Fan, Y. Ren, X. Zhang, Thermodynamic destabilization of magnesium hydride using Mg-based solid solution alloys. J. Phys. Chem. C 118(22), 11526–11535 (2014)

    Article  Google Scholar 

  40. M. Dornheim, T. Klassen, High Temperature Hydrides. Encyclopedia of Electrochemical Power Sources (Elsevier, Amsterdam, 2009), pp. 459–472

    Book  Google Scholar 

  41. A. Borgschulte, U. Bösenberg, G. Barkhordarian, M. Dornheim, R. Bormann, Enhanced hydrogen sorption kinetics of magnesium by destabilized MgH2−δ. Catal. Today 120, 262–269 (2007)

    Article  Google Scholar 

  42. G. Barkhordarian, T. Klassen, R. Bormann, Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5 contents. J. Alloys Compd. 407, 249–255 (2006)

    Article  Google Scholar 

  43. H.M. Mintz, Y. Zeiri, Review: hydriding kinetics of powders. J. Alloys Compd. 216, 159–175 (1994)

    Article  Google Scholar 

  44. E. Evard, I. Gabis, V.A. Yartys, Kinetics of hydrogen evolution from MgH2: experimental studies, mechanism and modelling. Int. J. Hydrogen Energy 35(17), 9060–9069 (2010)

    Article  Google Scholar 

  45. J. Huot, G. Liang, R. Schulz, Mechanically alloyed metal hydride systems. Appl. Phys. 72(2), 187–195 (2001)

    Article  Google Scholar 

  46. P. Kuziora, M. Wyszyńska, M. Polanski, J. Bystrzycki, Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process. Int. J. Hydrogen Energy 39(18), 9883–9887 (2014)

    Article  Google Scholar 

  47. R.V. Denys, A.B. Riabov, J.P. Maehlen, M.V. Lototsky, J.K. Solberg, V.A. Yartys, In situ synchrotron X-ray diffraction studies of hydrogen desorption and absorption properties of Mg and Mg–Mm–Ni after reactive ball milling in hydrogen. Acta Mater. 57(13), 3989–4000 (2009)

    Article  Google Scholar 

  48. V. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, The effect of ball milling and equal channel angular pressing on hydrogen absorption/desorption properties of Mg-4.95 wt% Zn-0.71 wt% Zr (ZK60) alloy. Acta Mater. 52(2), 405–414 (2004)

    Article  Google Scholar 

  49. V. Skripnyuk, E. Buchman, E. Rabkin, Y. Estrin, M. Popov, S. Jorgensen, The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg–Ni alloy. J. Alloys Compd. 436, 99–106 (2007)

    Article  Google Scholar 

  50. V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing. Int. J. Hydrogen Energy 34(15), 6320–6324 (2009)

    Article  Google Scholar 

  51. V.M. Skripnyuk, E. Rabkin, L.A. Bendersky, A. Magrez, E. Carreño-Morelli, Y. Estrin, Hydrogen storage properties of as-synthesized and severely deformed magnesium—multiwall carbon nanotubes composite. Int. J. Hydrogen Energy 35(11), 5471–5478 (2010)

    Article  Google Scholar 

  52. S. Løken, J.K. Solberg, J.P. Maehlen, R.V. Denys, M.V. Lototsky, B.P. Tarasov, V.A. Yartys, Nanostructured Mg–Mm–Ni hydrogen storage alloy: structure-properties relationship. J. Alloys Compd. 446–447, 114–120 (2007)

    Article  Google Scholar 

  53. Á. Révész, M. Gajdics, L.K. Varga, G. Krállics, L. Péter, T. Spassov, Hydrogen storage of nanocrystalline Mg–Ni alloy processed by equal-channel angular pressing and cold rolling. Int. J. Hydrogen Energy 39(18), 9911–9917 (2014)

    Article  Google Scholar 

  54. M. Krystian, M.J. Zehetbauer, H. Kropik, B. Mingler, G. Krexner, Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular pressing. J. Alloys Compd. 509(Suppl 1), S449–S455 (2011)

    Article  Google Scholar 

  55. A.M. Jorge Jr, G.F. de Lima, M.R. Martins Triques, W.J. Botta, C.S. Kiminami, R.P. Nogueira, A.R. Yavari, T.G. Langdon, Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling. Int. J. Hydrogen Energy 39(8), 3810–3821 (2014)

    Article  Google Scholar 

  56. Y. Wu, W. Han, S.X. Zhou, M.V. Lototsky, J.K. Solberg, V.A. Yartys, Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2 Mm alloys. J. Alloys Compd. 466(1–2), 176–181 (2008)

    Article  Google Scholar 

  57. Y. Wu, M.V. Lototsky, J.K. Solberg, V.A. Yartys, W. Han, S.X. Zhou, Microstructure and novel hydrogen storage properties of melt-spun Mg–Ni–Mm alloys. J. Alloys Compd. 477(1–2), 262–266 (2009)

    Article  Google Scholar 

  58. Y. Wu, J.K. Solberg, V.A. Yartys, The effect of solidification rate on microstructural evolution of a melt-spun Mg–20Ni–8 Mm hydrogen storage alloy. J. Alloys Compd. 446–447, 178–182 (2007)

    Article  Google Scholar 

  59. R.V. Denys, A.A. Poletaev, J.K. Solberg, B.P. Tarasov, V.A. Yartys, LaMg11 with a giant unit cell synthesized by hydrogen metallurgy: crystal structure and hydrogenation behavior. Acta Mater. 58(7), 2510–2519 (2010)

    Article  Google Scholar 

  60. A.A. Poletaev, R.V. Denys, J.K. Solberg, B.P. Tarasov, V.A. Yartys, Microstructural optimization of LaMg12 alloy for hydrogen storage. J. Alloys Compd. 509, S633–S639 (2011)

    Article  Google Scholar 

  61. A.A. Poletaev, R.V. Denys, J.P. Maehlen, J.K. Solberg, B.P. Tarasov, V.A. Yartys, Nanostructured rapidly solidified LaMg11Ni alloy: microstructure, crystal structure and hydrogenation properties. Int. J. Hydrogen Energy 37(4), 3548–3557 (2012)

    Article  Google Scholar 

  62. P.E. de Jongh, P. Adelhelm, Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. ChemSusChem. 3(12), 1332–1348 (2010)

    Article  Google Scholar 

  63. T.K. Nielsen, F. Besenbacher, T.R. Jensen, Nanoconfined hydrides for energy storage. Nanoscale 3(5), 2086–2098 (2011)

    Article  ADS  Google Scholar 

  64. C. Zlotea, F. Cuevas, J. Andrieux, C. Matei Ghimbeu, E. Leroy, E. Léonel, S. Sengmany, C. Vix-Guterl, R. Gadiou, T. Martens, M. Latroche, Tunable synthesis of (Mg–Ni)-based hydrides nanoconfined in templated carbon studied by in situ synchrotron diffraction. Nano Energy 2(1), 12–20 (2013)

    Article  Google Scholar 

  65. P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, B.S. Dauvillier, P.B. Radstake, J.D. Meeldijk, J.W. Geus, K.P.D. Jong, The preparation of carbon-supported magnesium nanoparticles using melt infiltration. Chem. Mater. 19(24), 6052–6057 (2007)

    Article  Google Scholar 

  66. P. Javadian, C. Zlotea, C.M. Ghimbeu, M. Latroche, T.R. Jensen, Hydrogen storage properties of nanoconfined LiBH4–Mg2NiH4 reactive hydride composites. J. Phys. Chem. C 119(11), 5819–5826 (2015)

    Article  Google Scholar 

  67. Y.S. Au, M.K. Obbink, S. Srinivasan, P.C.M.M. Magusin, K.P. de Jong, P.E. de Jongh, The size dependence of hydrogen mobility and sorption kinetics for carbon-supported MgH2 particles. Adv. Funct. Mater. 24(23), 3604–3611 (2014)

    Article  Google Scholar 

  68. C. Zlotea, Y. Oumellal, S.-J. Hwang, C.M. Ghimbeu, P.E. de Jongh, M. Latroche, Ultrasmall MgH2 Nanoparticles embedded in an ordered microporous carbon exhibiting rapid hydrogen sorption kinetics. J. Phys. Chem. C 119(32), 18091–18098 (2015)

    Article  Google Scholar 

  69. R. Bogerd, P. Adelhelm, J.H. Meeldijk, K.P. de Jong, P.E. de Jongh, The structural characterization and H2 sorption properties of carbon-supported Mg1−x Ni x nanocrystallites. Nanotechnology 20(20), 204019 (2009)

    Article  ADS  Google Scholar 

  70. G. Siviero, V. Bello, G. Mattei, P. Mazzoldi, G. Battaglin, N. Bazzanella, R. Checchetto, A. Miotello, Structural evolution of Pd-capped Mg thin films under H2 absorption and desorption cycles. Int. J. Hydrogen Energy 34(11), 4817–4826 (2009)

    Article  Google Scholar 

  71. C.E. Buckley, H.K. Birnbaum, J.S. Lin, S. Spooner, D. Bellmann, P. Staron, T.J. Udovic, E. Hollar, Characterization of H defects in the aluminium-hydrogen system using small-angle scattering techniques. J. Appl. Crystallogr. 34(2), 119–129 (2001)

    Article  Google Scholar 

  72. D. Milcius, J. Grbović-Novaković, R. Zostautienė, M. Lelis, D. Girdzevicius, M. Urbonavicius, Combined XRD and XPS analysis of ex situ and in situ plasma hydrogenated magnetron sputtered Mg films. J. Alloys Compd. 647, 790–796 (2015)

    Article  Google Scholar 

  73. R. Gremaud, C.P. Broedersz, D.M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J.H. Rector, B. Dam, R. Griessen, Hydrogenography: an optical combinatorial method to find new light-weight hydrogen-storage materials. Adv. Mater. 19(19), 2813–2817 (2007)

    Article  Google Scholar 

  74. D.M. Borsa, R. Gremaud, A. Baldi, H. Schreuders, J.H. Rector, B. Kooi, P. Vermeulen, P.H.L. Notten, B. Dam, R. Griessen, Structural, optical, and electrical properties of Mg y Ti1−y H x thin films. Phys. Rev. B 75(20), 205408 (2007)

    Article  ADS  Google Scholar 

  75. A. Baldi, R. Gremaud, D. Borsa, C. Balde, A. Vandereerden, G. Kruijtzer, P. Dejongh, B. Dam, R. Griessen, Nanoscale composition modulations in Mg y Ti1−y H x thin film alloys for hydrogen storage. Int. J. Hydrogen Energy 34(3), 1450–1457 (2009)

    Article  Google Scholar 

  76. K. Asano, R.J. Westerwaal, A. Anastasopol, L.P.A. Mooij, C. Boelsma, P. Ngene, H. Schreuders, S.W.H. Eijt, B. Dam, Destabilization of Mg hydride by self-organized nanoclusters in the immiscible Mg–Ti system. J. Phys. Chem. C 119(22), 12157–12164 (2015)

    Article  Google Scholar 

  77. K. Asano, H. Kim, K. Sakaki, K. Page, S. Hayashi, Y. Nakamura, E. Akiba, Synthesis and structural study of Ti-rich Mg–Ti hydrides. J. Alloys Compd. 593, 132–136 (2014)

    Article  Google Scholar 

  78. L. Mooij, T. Perkisas, G. Pálsson, H. Schreuders, M. Wolff, B. Hjörvarsson, S. Bals, B. Dam, The effect of microstructure on the hydrogenation of Mg/Fe thin film multilayers. Int. J. Hydrogen Energy 39(30), 17092–17103 (2014)

    Article  Google Scholar 

  79. A. Baldi, M. Gonzalez-Silveira, V. Palmisano, B. Dam, R. Griessen, Destabilization of the Mg–H system through elastic constraints. Phys. Rev. Lett. 102(22), 226102 (2009)

    Article  ADS  Google Scholar 

  80. C.J. Chung, S.-C. Lee, J.R. Groves, E.N. Brower, R. Sinclair, Clemens BM (2012) Interfacial Alloy Hydride Destabilization in Mg/Pd Thin Films. Phys Rev Lett. 108(10), 106102 (2012)

    Article  ADS  Google Scholar 

  81. L. Mooij, B. Dam, Hysteresis and the role of nucleation and growth in the hydrogenation of Mg nanolayers. Phys. Chem. Chem. Phys. 15(8), 2782 (2013)

    Article  Google Scholar 

  82. M. Lototskyy, J.M. Sibanyoni, R.V. Denys, M. Williams, B.G. Pollet, V.A. Yartys, Magnesium–carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen. Carbon 57, 146–160 (2013)

    Article  Google Scholar 

  83. K. Alsabawi, T.A. Webb, E.M. Gray, C.J. Webb, Effect of C60 additive on magnesium hydride for hydrogen storage. Int. J. Hydrogen Energy 40(33), 10508–10515 (2015)

    Article  Google Scholar 

  84. D. Korablov, J. Ångström, M.B. Ley, M. Sahlberg, F. Besenbacher, T.R. Jensen, Activation effects during hydrogen release and uptake of MgH2. Int. J. Hydrogen Energy 39(18), 9888–9892 (2014)

    Article  Google Scholar 

  85. M.V. Lototsky, R.V. Denys, V.A. Yartys, Combustion-type hydrogenation of nanostructured Mg-based composites for hydrogen storage. Int. J. Energy Res. 33(13), 1114–1125 (2009)

    Article  Google Scholar 

  86. G. Barkhordarian, T. Klassen, R. Bormann, Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scr. Mater. 49(3), 213–217 (2003)

    Article  Google Scholar 

  87. M.P. Pitt, M. Paskevicius, C.J. Webb, D.A. Sheppard, C.E. Buckley, E.M. Gray, The synthesis of nanoscopic Ti based alloys and their effects on the MgH2 system compared with the MgH2 + 0.01Nb2O5 benchmark. Int. J. Hydrogen Energy 37(5), 4227–4237 (2012)

    Article  Google Scholar 

  88. J. Lu, Y.J. Choi, Z.Z. Fang, H.Y. Sohn, E. Ronnebro, Hydrogen storage properties of nanosized MgH2-0.1TiH2 prepared by ultrahigh-energy-high-pressure milling. J. Am. Chem. Soc. 131(43), 15843–15852 (2009)

    Article  Google Scholar 

  89. X. Zhu, L. Pei, Z. Zhao, B. Liu, S. Han, R. Wang, The catalysis mechanism of La hydrides on hydrogen storage properties of MgH2 in MgH2 + x wt% LaH3 (x = 0, 10, 20 and 30) composites. J. Alloys Compd. 577, 64–69 (2013)

    Article  Google Scholar 

  90. A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 288(1–2), 217–225 (1999)

    Article  Google Scholar 

  91. M. Dornheim, N. Eigen, G. Barkhordarian, T. Klassen, R. Bormann, Tailoring hydrogen storage materials towards application. Adv. Eng. Mater. 8(5), 377–385 (2006)

    Article  Google Scholar 

  92. K.F. Aguey-Zinsou, T. Nicolaisen, J.R. Ares Fernandez, T. Klassen, R. Bormann, Effect of nanosized oxides on MgH2 (de)hydriding kinetics. J. Alloys Compd. 434–435, 738–742 (2007)

    Article  Google Scholar 

  93. W. Oelerich, T. Klassen, R. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compd. 315(1–2), 237–242 (2001)

    Article  Google Scholar 

  94. G. Barkhordarian, T. Klassen, R. Bormann, Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J. Alloys Compd. 364(1–2), 242–246 (2004)

    Article  Google Scholar 

  95. G. Barkhordarian, T. Klassen, R. Bormann, Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction. J. Phys. Chem. B 110(22), 11020–11024 (2006)

    Article  Google Scholar 

  96. F. Dolci, M.D. Chio, M. Baricco, E. Giamello, Niobium pentoxide as promoter in the mixed MgH2/Nb2O5 system for hydrogen storage: a multitechnique investigation of the H2 uptake. J. Mater. Sci. 42(17), 7180–7185 (2007)

    Article  ADS  Google Scholar 

  97. O. Friedrichs, F. Aguey-Zinsou, J.R. Ares Fernandez, J.C. Sanchez-Lopez, A. Justo, T. Klassen, R. Bormann, A. Fernandez, MgH2 with Nb2O5 as additive for hydrogen storage: chemical, structural and kinetic behaviour with heating. Acta Mater. 54, 105–110 (2006)

    Article  Google Scholar 

  98. O. Friedrichs, D. Martinez-Martinez, G. Guilera, J.C. SanchezLopez, A. Fernandez, In situ energy-dispersive XAS and XRD study of the superior hydrogen storage system MgH2/Nb2O5. J. Phys. Chem. C 111(28), 10700–10706 (2007)

    Article  Google Scholar 

  99. O. Friedrichs, J.C. Sánchez-López, C. López-Cartes, T. Klassen, R. Bormann, A. Fernández, Nb2O5 “Pathway effect” on hydrogen sorption in Mg. J. Phys Chem. B 110(15), 7845–7850 (2006)

    Article  Google Scholar 

  100. T.R. Jensen, T.K. Nielsen, Y. Filinchuk, J.-E. Jorgensen, Y. Cerenius, E.M. Gray, C.J. Webb, Versatile in situ powder X-ray diffraction cells for solid-gas investigations. J. Appl. Crystallogr. 43(6), 1456–1463 (2010)

    Article  Google Scholar 

  101. B.R.S. Hansen, K.T. Møller, M. Paskevicius, A.-C. Dippel, P. Walter, C.J. Webb, C. Pistidda, N. Bergemann, M. Dornheim, T. Klassen, J.-E. Jørgensen, T.R. Jensen, In situ X-ray diffraction environments for high-pressure reactions. J. Appl. Crystallogr. 48(4), 1234–1241 (2015)

    Article  Google Scholar 

  102. T.K. Nielsen, T.R. Jensen, MgH2–Nb2O5 investigated by in situ synchrotron X-ray diffraction. Int. J. Hydrogen Energy 37(18), 13409–13416 (2012)

    Article  Google Scholar 

  103. A. Aurora, M.R. Mancini, D.M. Gattia, A. Montone, L. Pilloni, E. Todini, M.V. Antisari, Microstructural and kinetic investigation of hydrogen sorption reaction of MgH2/Nb2O5 nanopowders. Mater. Manuf. Process. 24(10–11), 1058–1063 (2009)

    Article  Google Scholar 

  104. L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z Phys. 5(1), 17–26 (1921)

    Article  ADS  Google Scholar 

  105. P.-A. Huhn, M. Dornheim, T. Klassen, R. Bormann, Thermal stability of nanocrystalline magnesium for hydrogen storage. J. Alloys Compd. 404–406, 499–502 (2005)

    Article  Google Scholar 

  106. P.K. Pranzas, M. Dornheim, D. Bellmann, F. Aguey-Zinsou, T. Klassen, A. Schreyer, SANS/USANS investigations of nanocrystalline MgH2 for reversible storage of hydrogen. Physica B 385–386, 630–632 (2006)

    Article  Google Scholar 

  107. P.K. Pranzas, M. Dornheim, U. Bösenberg, J.R. Ares Fernandez, G. Goerigk, S. Roth, R. Gehrke, A. Schreyer, Small-angle scattering investigations of magnesium hydride used as a hydrogen storage material. J. Appl. Crystallogr. 40, 383–387 (2007)

    Article  Google Scholar 

  108. R.L. Corey, T.M. Ivancic, D.T. Shane, E.A. Carl, R.C. Bowman, J.M. Bellosta von Colbe, M. Dornheim, R. Bormann, J. Huot, R. Zidan, A.C. Stowe, M.S. Conradi, Hydrogen motion in magnesium hydride by NMR. J. Phys. Chem. C 112, 19784–19790 (2008)

    Article  Google Scholar 

  109. A. Borgschulte, J.H. Rector, B. Dam, R. Griessen, A. Züttel, The role of niobium oxide as a surface catalyst for hydrogen absorption. J. Catal. 235, 353–358 (2005)

    Article  Google Scholar 

  110. N. Hanada, T. Ichikawa, H. Fujii, Catalytic effect of Ni nano-particle and Nb oxide on H-desorption properties in MgH2 prepared by ball-milling. J. Alloys Compd. 404, 716–719 (2005)

    Article  Google Scholar 

  111. P. Moretto, C. Zlotea, F. Dolci, A. Amieiro, J.L. Bobet, A. Borgschulte, D. Chandra, H. Enoki, P. De Rango, D. Fruchart, J. Jepsen, M. Latroche, I.L. Jansa, D. Moser, S. Sartori, S.M. Wang, J.A. Zan, A Round Robin Test exercise on hydrogen absorption/desorption properties of a magnesium hydride based material. Int. J. Hydrogen Energy 38(16), 6704–6717 (2013)

    Article  Google Scholar 

  112. J.-C. Crivello, R.V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, J. Huot, T.R. Jensen, M. Latroche, C. Milanese, G.S. Walker, Mg-based Compounds for Hydrogen and Energy Storage. Appl. Phys. A This issue

  113. P. de Rango, P. Marty, D. Fruchart, Integrated with FC H storage systems utilising magnesium hydride: experimental studies and modelling. Appl. Phys. A This issue

Download references

Acknowledgments

This work is a part of the activities within IEA Task 32 Hydrogen-based Energy Storage. We are grateful for the task coordinator Dr. Michael Hirscher and all the experts from the Task 32 for the fruitful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. J. Webb or V. A. Yartys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crivello, JC., Dam, B., Denys, R.V. et al. Review of magnesium hydride-based materials: development and optimisation. Appl. Phys. A 122, 97 (2016). https://doi.org/10.1007/s00339-016-9602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9602-0

Keywords

Navigation