Skip to main content

Advertisement

Log in

The effects of substituting B for Cu on the magnetic and shape memory properties of CuAlMnB alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of B addition on the magnetization, mechanical and shape memory properties in Cu70−x Al24Mn6B x at.% (x = 0, 1, 2, 3, 4) alloys have been investigated. The ductility was decreased, while the strength was improved with B addition. Transformation temperatures were increased with B content due to increased e/a ratio. Martensite start temperature of B-free CuAlMn was found to be 37.3 °C and increased to 218.8 °C with 4 % B addition. B-free CuAlMn exhibited shape memory effect with a recoverable strain of 2.25 % under 200 MPa and a perfect superelasticity with a recoverable strain of 2.5 % at 163 °C. B addition degraded the shape memory properties and eventually resulted in the lack of recoverable strain. In addition, saturation magnetization was increased with B content. Moreover, the addition of B slightly decreased the ductility of the alloy. It was found that the magnetization, mechanical and shape memory properties CuAlMn alloys can be tailored by quaternary alloying with B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  2. M. Elahinia, Shape Memory Alloy Actuators: Design, Fabrication and Experimental Evaluation (Wiley, New York, 2015)

    Book  Google Scholar 

  3. Y. Sutou, T. Omori, J. Wang, R. Kainuma, K. Ishida, Characteristics of Cu–Al–Mn-based shape memory alloys and their applications. Mater. Sci. Eng. A 378, 278–282 (2004)

    Article  Google Scholar 

  4. T. Tadaki, Cu-based shape memory alloys, in Shape Memory Materials (1998), pp. 97–116

  5. S. Miyazaki, K. Otsuka, Development of shape memory alloys. ISIJ Int. 29, 353–377 (1989)

    Article  Google Scholar 

  6. U. Mallik, V. Sampath, Influence of aluminum and manganese concentration on the shape memory characteristics of Cu–Al–Mn shape memory alloys. J. Alloys Compd. 459, 142–147 (2008)

    Article  Google Scholar 

  7. Y. Sutou, T. Omori, R. Kainuma, K. Ishida, Ductile Cu–Al–Mn based shape memory alloys: general properties and applications. Mater. Sci. Technol. 24, 896–901 (2008)

    Article  Google Scholar 

  8. R. Kainuma, N. Satoh, X. Liu, I. Ohnuma, K. Ishida, Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. J. Alloys Compd. 266, 191–200 (1998)

    Article  Google Scholar 

  9. R. Kainuma, S. Takahashi, K. Ishida, Thermoelastic martensite and shape memory effect in ductile Cu–Al–Mn alloys. Metall. Mater. Trans. A 27, 2187–2195 (1996)

    Article  Google Scholar 

  10. R. Kainuma, S. Takahashi, K. Ishida, Ductile shape memory alloys of the Cu–Al–Mn system. J. Phys. IV 5, C8-961–C8-966 (1995)

    Google Scholar 

  11. G. Felcher, J. Cable, M. Wilkinson, The magnetic moment distribution in Cu2MnAl. J. Phys. Chem. Solids 24, 1663–1665 (1963)

    Article  ADS  Google Scholar 

  12. M. Prado, F. Lovey, L. Civale, Magnetic properties of Cu–Mn–Al alloys with shape memory effect. Acta Mater. 46, 137–147 (1998)

    Article  Google Scholar 

  13. H.E. Karaca, I. Karaman, A. Brewer, B. Basaran, Y.I. Chumlyakov, H.J. Maier, Shape memory and pseudoelasticity response of NiMnCoIn magnetic shape memory alloy single crystals. Scr. Mater. 58, 815–818 (2008)

    Article  Google Scholar 

  14. H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, H.J. Maier, Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—a new actuation mechanism with large work output. Adv. Funct. Mater. 19, 983–998 (2009)

    Article  Google Scholar 

  15. A.K. Pathak, I. Dubenko, H.E. Karaca, S. Stadler, N. Ali, Large inverse magnetic entropy changes and magnetoresistance in the vicinity of a field-induced martensitic transformation in Ni50−x Co x Mn32−y Fe y Ga18. Appl. Phys. Lett. 97, 062503–062505 (2010)

    Article  ADS  Google Scholar 

  16. U. Mallik, V. Sampath, Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J. Alloys Compd. 469, 156–163 (2009)

    Article  Google Scholar 

  17. K.P. Zhu, N. Hu, F.S. Liu, Effect of Fe on phase transformation of low temperature Cu–Al–Mn memory alloy, in Materials Science Forum—Trans Tech Publ, vol. 687 (2011), pp. 474–479

  18. Y. Suzuki, Y. Xu, S. Morito, K. Otsuka, K. Mitose, Effects of boron addition on microstructure and mechanical properties of Ti–Td–Ni high-temperature shape memory alloys. Mater. Lett. 36, 85–94 (1998)

    Article  Google Scholar 

  19. W.S. Yang, D. Mikkola, Ductilization of Ti–Ni–Pd shape memory alloys with boron additions. Scr. Metall. Mater. 28, 161–165 (1993)

    Article  Google Scholar 

  20. B.R. Gautam, I. Dubenko, A.K. Pathak, S. Stadler, N. Ali, The structural and magnetic properties of Ni2Mn1−x B x Ga Heusler alloys. J. Magn. Magn. Mater. 321, 29–33 (2009)

    Article  ADS  Google Scholar 

  21. B.R. Gautam, I. Dubenko, A.K. Pathak, S. Stadler, N. Ali, Effect of isoelectronic substitution on magnetic properties of Ni(2)Mn(GaB) Heusler alloys. J. Phys. Condes. Matter 20, 5 (2008)

    Article  Google Scholar 

  22. Y. Aydogdu, A.S. Turabi, M. Kok, A. Aydogdu, H. Tobe, H.E. Karaca, Effects of the substitution of gallium with boron on the physical and mechanical properties of Ni–Mn–Ga shape memory alloys. Appl. Phys. A 117, 2073–2078 (2014)

    Article  ADS  Google Scholar 

  23. Y. Aydoğdu, G. Kırat, M. Kök, A.S. Turabi, A. Aydoğdu, M.A. Aksan, H.E. Karaca, Effects of boron addition on the physical properties of CuAlMn shape memory alloys, in 9th International Conference on Magnetic and Superconducting Materials (2015), p. 69

  24. M. Ramudu, A. Satish Kumar, V. Seshubai, Influence of boron addition on the microstructure, structural and magnetic properties of Ni53.5Mn26.0Ga20.5 alloy. Intermetallics 28, 51–57 (2012)

    Article  Google Scholar 

  25. M. Morris, High temperature properties of ductile Cu–Al–Ni shape memory alloys with boron additions. Acta Metall. Mater. 40, 1573–1586 (1992)

    Article  Google Scholar 

  26. Y.S. Han, Y.G. Kim, The effects of boron and aging on mechanical properties and martensitic temperatures in Cu–Zn–Al shape-memory alloys. Scr. Metall. 21, 947–952 (1987)

    Article  Google Scholar 

  27. V. Chernenko, Compositional instability of β-phase in Ni–Mn–Ga alloys. Scr. Mater. 40, 523–527 (1999)

    Article  Google Scholar 

  28. E. Obradó, L. Mañosa, A. Planes, Stability of the bcc phase of Cu–Al–Mn shape-memory alloys. Phys. Rev. B 56, 20 (1997)

    Article  ADS  Google Scholar 

  29. H.E. Karaca, E. Acar, H. Tobe, S.M. Saghaian, NiTiHf-based shape memory alloys. Mater. Sci. Technol. (UK) 30, 1530–1544 (2014)

    Article  Google Scholar 

  30. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006)

    Article  ADS  Google Scholar 

  31. A.S. Turabi, H.E. Karaca, H. Tobe, B. Basaran, Y. Aydogdu, Y.I. Chumlyakov, Shape memory effect and superelasticity of NiMnCoIn metamagnetic shape memory alloys under high magnetic field. Scr. Mater. 111, 110–113 (2016)

    Article  Google Scholar 

  32. D. Coughlin, P. Phillips, G. Bigelow, A. Garg, R. Noebe, M. Mills, Characterization of the microstructure and mechanical properties of a 50.3 Ni–29.7 Ti–20Hf shape memory alloy. Scr. Mater. 67, 112–115 (2012)

    Article  Google Scholar 

  33. H.E. Karaca, S.M. Saghaian, G. Ded, H. Tobe, B. Basaran, H.J. Maier, R.D. Noebe, Y.I. Chumlyakov, Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater. 61, 7422–7431 (2013)

    Article  Google Scholar 

  34. H. Xuan, D. Wang, C. Zhang, Z. Han, B. Gu, Y. Du, Boron’s effect on martensitic transformation and magnetocaloric effect in Ni43Mn46Sn11B x alloys. Appl. Phys. Lett. 92, 2503 (2008)

    Google Scholar 

  35. M. Zarinejad, Y. Liu, Dependence of transformation temperatures of shape memory alloys on the number and concentration of valence electrons, in Shape Memory Alloys: Manufacture, Properties and Applications, ed. by H.R. Chen (2010), p. 339

  36. H. Sehitoglu, J. Jun, X. Zhang, I. Karaman, Y. Chumlyakov, H. Maier, K. Gall, Shape memory and pseudoelastic behavior of 51.5 % Ni–Ti single crystals in solutionized and overaged state. Acta Mater. 49, 3609–3620 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by TUBITAK under Project No. 113F234 and National Science Foundation (NSF) CMMI Award #0954541.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Aydogdu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydogdu, Y., Turabi, A.S., Aydogdu, A. et al. The effects of substituting B for Cu on the magnetic and shape memory properties of CuAlMnB alloys. Appl. Phys. A 122, 687 (2016). https://doi.org/10.1007/s00339-016-0222-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0222-5

Keywords

Navigation